Using Siemens NX 11 Software

Sheet Metal Design - Casing

Based on a YouTube NX tutorial¹.

¹https://www.youtube.com/watch?v=-SIYi1Vz87k

1 – Introduction.

- Start NX 11 and create a new Sheet Metal • model called casing.prt.
- Create a sketch in the XY plane and draw a rectangle centred at the origin with an x-length of 60 mm and a y-width of 50 mm.
- Exit the sketch mode. •

2 – Changing design narameters	Sheet Metal Preferences			
	Sheet Metal Validation Callout Configuration Joggle			
Go to Many Proferences Sheet Metal	Part Properties Flat Pattern Treatments Flat Pattern Display			
Go to <i>Menu</i> → <i>Preferences</i> → <i>Sheet Metal</i> In the <i>Sheet Metal Preferences</i> dialog box, set all the four <i>Global Parameters</i> to 1 mm .	Part Properties Flat Pattern Treatments Flat Pattern Display Parameter Entry Value Entry Select Material No Material Selected O Material Selection Select Tool No Tool Selected Global Parameters Material Thickness mm Relief Depth mm Bend Radius 1 mm Bend Parameter Bend Definition Method Neutral Factor Value D:33 Bend Allowance Formula (Radius+(Thickness*0.44))*rad(Angle) 			
	OK Apply Canc			

4 – Bending.

- Again, draw a sketch in the plane **P** consisting in two symmetric horizontal lines w.r.t the x-axis. The upper horizontal line is located at **10 mm** from the upper left corner of the metal sheet.
- Exit the sketch mode and click the *Bend* button, under the *More* button of the *Bend* field.

- In the *Bend* dialog box, select one line as Bend Line and use an angle of **90 degrees**.
- Redo the same procedure for the other, symmetric, line.
- Note: if needed, use the *Reverse Side* option for obtaining the same result as below.

🧔 Bend	ง x
Bend Line	^
✓ Select Curve (1)	
Target	^
✓ Select Face (1)	
Bend Properties	^
Angle	90 deg 🔻
Reverse Direction	×
Reverse Side	×
Inset	H Outer Mold Line 👻
 Extend Section 	
	•
< OK >	Apply Cancel

Base Edge

Length Match Fac

Angle

Length I

- Apply the same flange to the corresponding symmetric edge of the metal sheet.
- Also, apply the same flange on the below shown edge of the metal sheet, and its symmetric counterpart.
- The final result to obtain is shown here below.

6 – Breaking corners.

- Click on the *Break Corners* button
 Break Corner
 In the *Break Corner* dialog box, use the *Blend* method with a *Radius* of 1 mm.
- Apply the *Break Corner* to the edges shown in figure below. /

7 – Unbending the metal sheet.

- Click on the *Unbend* button ² Unbend
- In the *Unbend* dialog box, select as *Stationary Face* the larger horizontal (inside the plane **P**) face of the metal sheet. Select as *Bend* face one of its adjacent face.

- Redo as many similar operations as necessary in order to obtain a flat metal sheet.
- Warning: keep in mind (or take some notes) the order in which you unbend the faces. You will need to re-bend these faces in the reverse order at the end of this tutorial.

- Click on the *Studio Spline* button
- In the *Studio Spline* dialog box, set the *Type* field to *By Poles*. Check the *Closed* option.
- Select one by one all the 16 points of the sketch in a **clockwise (or anti-clockwise) fashion**.
- Click *OK* to validate the creation of the new spline curve.

- Click on the *Move Curve* button
- In the *Move Curve* dialog box, select the spline curve you just drawn.
- Set the *Motion* option of the *Transform* field to *Angle*.
- Specify the origin (0, 0, 0) as axis point.
- Finally, enter an angle of **45 degrees** and click *OK* to validate.

Studio S	pline		ა x		
Туре			^		
Ay By Pole	S		•		
Pole Locati	on		^		
🗸 Specify F	Poles (16)		↓		
Parameteri	zation		^		
Degree			3 🛟		
Single Segment ✓ Closed					
Movement	:		^		
⊖ wcs	View	○ Vector			
○ Plane	O Normal	O Polygon			
	•				
	< OK >	Apply	Cancel		

Φ	Move C	urve				υx
Сι	urve					^
✓	Use Curv	e Finder				
✓ Select Curve (1)						1
	Curve Fir	nder				^
	Result	Setting	R	eference		
	Found					
						_
						_
Tr	ansform					^
М	otion			🖄 Angle		•
•	Specify /	Axis Point			_	ļ
Aı	ngle			45	deg	•
				•		
		< OK >		Apply	Car	rcel

Dimple 9.b – Adding a dimple. $\mathbf{o} \mathbf{X}$ Section Click on the Dimple button • Select Curve (1) Bi 70 🧕 Dimple and select the spline curve. Set the *Depth* option to **1 mm** and *Side* • **Dimple Properties** ۸ Walls to Material Inside. Depth × 1 Expand the dialog box (little black mm Ŧ • triangle) and expand the Rounding field 0 deg Side Angle Ŧ by left-clicking on it. Depth Reference ר Inside Ŧ Set all the parameters of the *Rounding* • field to 1 mm. Side Walls U Material Inside Ŧ Click *OK* to validate your dimple. • Rounding ۸ Round Dimple Edges Punch Radius 1 mm Ŧ Die Radius 1 mm Ŧ Round Section Corners Corner Radius 1 mm Ŧ Validation Parameters ۸ Minimum Tool Clearance 5.0000 = mm 10 – Adding beads. Preview v In the **P**-plane, draw a circle of **5 mm** in . • diameter as shown. Apply Cancel

- Click on the *Bead* button Sead
- In the *Bead* dialog box, select the circle you just drawn.
- Set the *Depth* and *Radius* options to **1 mm**, and the *Cross Section* to *Circular*.
- Expand the dialog box (small black triangle) and expand the *Rounding* field.
- In the *Rounding* field, set the *Die Radius* to **1 mm**.

Bead		(υx
Section			^
✔ Select Curve (1)			đ
Bead Properties			٨
Cross Section	⊈ Circular		•
	Sr.		
(D) Douth			
(D) Depth	1	mm	-
End Condition	√ √ Formed		+
Pounding			_
Rounding			~
Die Radius	1	mm	•
	8		
Validation Parameters			^
Minimum Tool Clearance	5.0000	mm	=
Preview			v
1			

• Click on the *Mirror Feature* button Mirror Feature, under the *More* button

- Select the bead and its corresponding sketch as *Feature to Mirror*.
- Select the YZ plane as the mirror plane and click *Apply* to validate.
- Then, select the two beads (and their corresponding sketches) and redo a feature mirror by choosing this time the XZ-plane.

11 – Re-bending.

- Click on the *Rebend* button ¹/₂ Rebend
- Re-bend the faces by selecting them in the **reverse order in which they were bend**.
- Hide the sketches. You should obtain the same result as the one shown at the beginning of this tutorial.

12 – Drafting.

• Click on the *Flat Pattern* button Flat Pattern , under *Flat Pattern* menu

- Select the central flat face of the metal sheet and validate. This will create a flattened version of our metal sheet.
- If an information dialog box opens, just click *OK*.
- For the moment, the flattened version is not visible. To make it visible, go in the *Part Navigator* and expand the *Model View* tree.
- Double-click on the object named *FLAT*-*PATTERN#1*.
- Create a new drafting file of size A4, and

- add a new Base View Vie
- In the *Base View* dialog box, select in the option *Model View To Use FLAT-PATTERN#1*.
- Set the *Scale* to 2:1.

Base View	ა x
View Origin	^
🖗 Specify Location	÷
Placement	^
Method	🖁 Inferred 🔻
Model View	^
Model View to Use	FLAT-PATTERN#1 ▼
Orient View Tool	
Scale	^
Scale	2:1 🔻
	▼ Close

- The draft will probably be too big for fitting inside the available space of the form.
- Rotate it using the *Orient View Tool*

button in order to make it fit.

- Add the rotated draft to its form.
- Delete the text that is automatically added with the draft.
- Do not forget to save your draft file.

