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Abstract

Curvature formulas for implicit curves and surfaces are derived from the classical curvature formulas in Differ-
ential Geometry for parametric curves and surfaces. These closed formulas include curvature for implicit planar
curves, curvature and torsion for implicit space curves, and mean and Gaussian curvature for implicit surfaces.
Some extensions of these curvature formulas to higher dimensions are also provided.
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1. Introduction

Curvature formulas for parametrically defined curves and surfaces are well-known both in the classical
literature on Differential Geometry (Spivak, 1975; Stoker, 1969; Struik, 1950) and in the contemporary
literature on Geometric Modeling (Farin, 2002; Hoschek and Lasser, 1993).

Curvature formulas for implicitly defined curves and surfaces are more scattered and harder to lo-
cate. In the classical geometry literature, a curvature formula for implicit planar curves is presented in
(Fulton, 1974); an algorithm, but no explicit formulas, for finding the curvature and torsion of implic-
itly defined space curves is provided in (Willmore, 1959). Mean and Gaussian curvature formulas for
implicit surfaces can be found in (Spivak, 1975, vol. 3), but, somewhat surprisingly, almost nowhere
else in Differential Geometry texts in the English language. German geometry papers and texts with
curvature formulas for implicit surfaces seem to be more common (Dombrowski, 1968; Gromoll et al.,
1975; Knoblauch, 1888, 1913), but these references remain largely inaccessible to most English speakin
researchers in Geometric Modeling.
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Nevertheless, curvature formulas for implicitly defined curves and surfaces are important in Geomet-
ric Modeling applications, and many of these formulas do appear scattered throughout the Geometric
Modeling literature. Curvature formulas for implicit curves and surfaces in normal form appear in (Hart-
menn, 1999). A curvature formula for arbitrary implicit planar curves appears in (Bajaj and Kim, 1991;
Blinn, 1997); mean and Gaussian curvature formulas for arbitrary implicitly defined surfaces are fur-
nished by (Belyaev et al., 1998; Turkiyyah et al., 1997). To derive these curvature formulas for implicit
surfaces, (Belyaev et al., 1998) refer to (Turkiyyah et al., 1997) who in turn refer to (Spivak, 1975,
vol. 3). Procedures for finding curvature and torsion formulas for implicit space curves as well as mean
and Gaussian curvature formulas for implicit surfaces are given in (Patrikalakis and Maekawa, 2002), but
explicit closed formulas are not provided.

Curvature formulas for implicit curves and surfaces also appear in some recent texts on level set
methods (Osher and Fedkiw, 2003; Sethian, 1999). A curvature formula for implicit planar curves is
presented in both of these texts; (Osher and Fedkiw, 2003) also contains explicit formulas for the mean
and Gaussian curvature of implicit surfaces.

The purpose of this paper is to provide a service to the Geometric Modeling community by collect-
ing in one easily accessible place curvature formulas for implicitly defined curves and surfaces. In order
to better understand the relationships between curvature formulas in different dimensions and different
co-dimensions, we shall develop, in each case, not just one closed formula, but several equivalent expres-
sions. We shall also provide a bridge between the parametric and implicit formulations by deriving these
curvature formulas for implicit curves and surfaces from the more commonly known curvature formulas
for parametric curves and surfaces.

In Section 2, we review the classical curvature formulas for parametric curves and surfaces. We use
these formulas in Section 3 to derive curvature formulas for implicit planar curves and in Section 4 to
derive mean and Gaussian curvature formulas for implicit surfaces. Section 5 is devoted to deriving cur-
vature and torsion formulas for implicit space curves. In Section 6 we collect all our curvature formulas
for implicit curves and surfaces together in one easily accessible location. Readers interested only in the
formulas, but not their derivations, can skip directly to Section 6. We close in Section 7 with a few open
questions for future research.

2. Curvatureformulasfor parametric curves and surfaces
For planar curves, curvature has several equivalent definitions:

(i) amount of deviation of the curve from the tangent line;
(i) rate of change of the tangent direction;
(iii) reciprocal of the radius of the osculating circle;
(iv) element of area of circular image/element of arclength.

For surfaces, curvature is more complicated. In analogy with curves, curvature for surfaces should
capture the deviation of the surface from the tangent plane. But, unlike planar curves, there is more than
one way to measure this deviation. The shape of the osculating paraboloid gives a rough measure of how
the surface deviates locally from the tangent plane. More precise information is provided by the mean
and Gaussian curvatures.
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Gaussian curvature

(i) product of the principal curvatures;
(i) element of area of spherical image/element of surface area.

Mean curvature

(iii) average of the principal curvatures;
(iv) rate of change of surface area under small deformations in the normal direction.

From these first principles, explicit curvature formulas can be derived for parametric curves and sur-
faces. We shall review these formulas in the following two subsections.

2.1. Curvature formulas for parametric curves
Consider a parametric curve(s) in 3-dimensions parametrized by arc length. Pét) be any other

parametrization ofP, and letP’, P”, and P"” denote the first, second, and third derivativesPoivith
respect ta. The unit tangent vector a? is given by

_ dpP _ P’
ds P
Therefore, in 3-dimensions, the curvature
dr| |P’ x P"|
k: —_— = —
ds | P’|

In 2-dimensions, this curvature formula reduces to

dT| |Det(P' P")|

ds |P’|3

Torsion measures deviation from the osculating plane. We shall see shortly that the torsion

k=

. Det(T (é_{ C::Tg) _ Det(P/ p P///)
k2 |P’ X P//|2
The Frenet equations (see below) express the derivatives of the ta@genormal(N), and binormal
(T x N) interms of the tangent, normal, binormal, curvature and torsion. We can use the Frenet equations
to generate explicit formulas for the curvature and torsion in terms of the tangent and normal vectors and
their derivatives (see Table 1). We shall make use of these explicit formulas in Sections 3 and 5, when we
develop closed formulas for the curvature and torsion of implicit curves.

2.2. Curvature formulas for parametric surfaces

Let P (s, t) be a parametric surface, and etand P, denote the partial derivatives & with respect
tos andt. (Higher order derivatives will be denoted in the usual way by repeatargl: the appropriate
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Table 1

Explicit formulas for the curvature and torsion in terms of the tangent and normal vectors and their derivatives. These formulas
follow easily from the Frenet equations

Frenet equations (Stoker, 1969) Curvature formulas Torsion formulas
ar _ _dar _dan

A — kT + (T x N) k=-9.7 r=-d0xM)
d(TxN) _ _|dr _ dN
2 =—TN k=[5 xT| T =Det(T N &)
pet(r 4 £7)
daN ; ds ;2
k=|ag—XN||f'C:0 T:Td

number of times.) The normal vector to the surface is perpendicular to the tangent @&ctors P, .
Therefore, the unit normal is given by

P, x P,
N=N(s,t)= ———.
| Py x P
Mean and Gaussian curvature for a parametric surface are usually defined in terms of the first and
second fundamental forms of the surface. These forms are given by the following matrices (Stoker, 1969):
First fundamental form

[ — P;e P, PieP )\
"\ P;eP;, PP )’
Second fundamental form

| = PseN Py,eN)_  (PieN; PieN,
"\ P,eN P,eN ) P,eN, P,oN, )’

Notice that in our two matrices for the second fundamental fBfne N = — P, ¢ N, because’; e N =
0. DifferentiatingP, ¢ N = 0 with respect ta yields P,;; ¢ N + P, ¢ N, = 0. The other equalities in these
matrices for the second fundamental form can be established in a similar manner.

In terms of the first and second fundamental forms, the mean and Gaussian curvatures are computed
by the expressions given below. In the formula for the mean curvdttirédenotes the adjoint of —that
is,

—P,eN P eN P,eN, —PieN;
Gaussian curvature

”*_(P,,.N —PtSoN>_(—P,oNZ P,oNS>

Det(ll)
Y~ Detl)’
Mean curvature
Tracdl = 117)
M= T Detl)

Though these curvature formulas are the classical formulas found in most standard books on Differen-
tial Geometry (Stoker, 1969), we need to massage these formulas slightly in order to use them effectively
when we study implicit surfaces.
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Lemma 2.1.

(i) Det(I)=|P, x P,|?.
(i) Det(Il) = (P, x P,) (N, X N,).
Proof. (i) This result follows by expanding the determinant and invoking the vector identity:
(aea)(beb)— (aeb)®>=l|ax bl
(ii) This result follows by expanding the determinant and invoking the vector identity:
(aec)(bed)—(aed)(bec)=(a xb)e(cxd). O

Corallary 2.2.
_ (Ps x P;) e (Ns x Ny)
B |Py x P2

K¢

Lemma2.3. Tracl x 11*) = (P; x P;) o (P, X Ny) — (P; x P;) o (P; x N;).

Proof. This result follows by computing the trace and then twice invoking the vector identity:
(aec)(bed)—(aed)(bec)=(axb)e(cxd). O

Corollary 2.4.
_ (P x P) o ((Pr X Ng) — (Ps x Ny))

K
. 2|PSXPt|2

3. Curvatureformulasfor implicit planar curves

Curvature is a second order effect—only the first and second derivatives appear in the curvature for-
mula for parametric curves. Therefore, for implicit planar cur¥&s, y) = 0, the curvature should
depend only on the gradieMmF and the hessial (F). We shall adopt the following notation:

oF OF
VE=(Z- )= (R R,
ax _ dy
3°F"  9°F
_ 0x? 8x8y _ Fxx ny _
H(F)= 92F 92F _(Fyx Fyy)_V(VF).
dydx  dy2

HereV applied to a row vector means take the gradient of each component and write these component
gradients in a matrix as consecutive column vectors.

Since the gradient of'(x, y) is perpendicular to the level curvdd(x, y) = ¢, the gradientVF is
parallel to the normal of (x, y) = 0. Therefore we have the following formulas:

Planar implicit curves

(1) Implicit curve: F(x,y) =0.



R. Goldman / Computer Aided Geometric Design 22 (2005) 632658 637

(2) Normal:VF = (Fy, Fy).
(3) Unit normal:
VF _ (F.F)

VFI T g2

(4) Tangent: Ta(F) =k x VF = (=F,, Fy).
(5) Unit tangent:

N(F)=

TanF)  (=F,, F,)

- |Tan(F)| /FX2_|_FyZ'

Proposition 3.1 (Curvature formula for implicit planar curves)

T(F)

CTE«HETE)T  CEEI ()« (3)

k =
IVF| (FZ+ F)32

(3.1)

Proof. From the Frenet equations,

dN
k=———eoT.
ds *
Hence by the chain rule,

__(Ndx  9Ndy
N dx ds = dy ds
But by the quotient rule,

)oT:—T*VN*TT.

VF IVFIV(VF)—=V(IVF)"«VF
[VF] [VF|2
Moreover
V(VF)=H(F),

VF«T"'=VFeT =0.
Therefore we conclude that
T(F)«H(F)xT(F)"
IVF|

k=

A word about invariance is in order here. The cuR#, y) = 0 is identical to the curveF (x,y) =0
for any constant # 0. Therefore we would expect that the curvaturgéf, y) = 0 should be the same
as the curvature of F(x, y) = 0. If ¢ > 0, then replacingF by cF on the right hand side of Eq. (3.1)
introduces a factor of® in both the numerator and the denominator, so the curvatiseunchanged.
However, replacingt’ by —F on the right hand side of Eq. (3.1) changes the sign of the numerator,
but not the sign of the denominator, thus changing the sign BeplacingF by — F also changes the
direction of the unit normaN (F) = VF/|V F|. Therefore the curvature vector,

K=kN(F)=kVF/|VF]
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is invariant, but the sign of the scalar curvatkimdepends on the choice of the direction of the unit normal,
which, in turn, depends on the sign #f This sign dependence shows up in the parametric setting as
well. By the Frenet equatior%’{ =kN. The derivative‘é{ is an invariant; the signs df and N are not
invariants, but rather are mutually dependent. Nevertheless, we shall continue to focus on expressions fo
the scalar curvaturk rather than the curvature vecty since it is expressions for the scalar curvature
that we plan to extend to curvature formulas for implicit space curves and implicit surfaces.

Example 3.1 (Circles). We can check our curvature formula on the circles
F(x,y)=x?>+y?>— R?=0.
By Proposition 3.1 to compute the curvature, we need to compute
(—F F)x (i) * ()
(F2+ F2)%2

Substituting for the derivatives @, we find that

C220x(3Y* () 8xP+yH  8RE 1

(202 + @)%~ @2+4?)%7 " 8RS R

Notice that the curvature here is negative, but notice too Wat= (2x, 2y) is the outward pointing
normal. Thus, as one would expect, the curvature vdcterkV F/|V F| points into the circle and has
magnitudgk| = 1/R.

k=

Eg. (3.1) allows us to calculate the curvature of implicit planar curves, but it is difficult to see how
this formula can be extended either to implicit space curves or to implicit surfaces. Implicit space curves
are defined by the intersection of two implicit surfacgk;(x, y, z) = 0} N {F>(x, y, z) = 0}. Thus for
implicit space curves we have two hessians to considéF;) andH (F5,). How then are we to replace the
hessianH (F) in Eqg. (3.1)? For implicit surfaceB (x, y, z) = 0, we have analogues of the gradient and
the hessian, but no analogue of the tangent vecto¢fTarso once again it is unclear how to generalize
Eg. (3.1). To overcome these shortcomings, we shall seek alternative ways to package Eg. (3.1)—tha
is, we shall seek equivalent expressions for the curvature for implicit planar curves that can be extendec
either to implicit space curves or to implicit surfaces.

To find new expressions for the curvature, we can proceed in the following fashion. In Table 1, we pre-
sented four formulas for the curvature in terms of the unit tangent, the unit normal, and their derivatives
with respect to arclength. Using these formulas and proceeding as in Proposition 3.1 applying the chain
rule and the quotient rule, we arrive at the following results.

Alternative curvature formulas

Curvature formula— = —‘(’j—’;’ oT

Tan(F)x H(F)« TanF)T _ (=Fy Fox (20 2)*(5”)

k=
VFP (FZ+ F2)?7

(3.1)
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Curvature formula—k = ?j—f o N

o Tan(F)« V(TanF) « VFT _ (<F, F)* (Ze0 m)=(2)

= 3.2
IVF[? (FZ+ F2)32 (3:2)

Curvature formula— = |2 x N| (r =0)

(Tan(F) « H(F)) x VF| |[(=Fy F) % (i ) x (Fy Fy)
IVF[? (FZ+ F2)32
Curvature formula— = |9 x T|
—Fyy Fyx
o |Tan(F) « V(TanF)) x Tank)| _ [(CF F)* (O] n))) X CFy B (3.4
| Tan(F)[2 (F2+ F2)32 ' '

Note that in the plane, the cross products that appear in Egs. (3.3) and (3.4) are really scalars—
the determinants of the two factors. Thus if we want the signed curvature, we should compute these
determinants and ignore the absolute value.

We can easily check the validity of Egs. (3.2)—(3.4) by expanding the right hand sides and observ-
ing that these expressions are each the same as the right hand side of Eq. (3.1). Eq. (3.4) is particularly
interesting because the right hand side depends only ofFJafor implicit space curves, the tan-
gent direction is known, since if the space curve is given by the intersection of two implicit surfaces
{Fi(x,y,z) =0} N {Fo(x, y,z) = 0}, then the tangent is parallel t6F; x VF,. Thus we expect that
Eqg. (3.4) for the curvature of implicit planar curves will readily extend to implicit space curves; we shall
have more to say about this extension in Section 5.

What about curvature formulas for implicit surfaces? For implicit surfaces we want to consider both
the mean and the Gaussian curvature. Therefore we need two different expressions for the curvature
of an implicit planar curve that readily extend, but in different ways, to implicit surfaces. None of the
expressions in Egs. (3.1)—(3.4) will do, since these expressions all depend @m),Tand for implicit
surfaces there is no analogue of T&n. For implicit surfaces, we need formulas that depend only on the
gradient and the hessian. Therefore, we must take another approach.

One device for developing new expressions for the curvature is to exploit the adjoint operator (see
Table 2).

Adopting the notation in Table 2, it is easy to verify the following identities:

Table 2
The adjoint operato# for constants, 2-dimensional row and column vectors,
and 2x 2 matrices

Constants k K=k
Row vectors r=(r1,r2) r*=(=rg,r)"
Column vectors c=(c1,c2)T ¢* = —(—c2,¢1)

Matrices M= (mll m12> M* = < m22 _m21)
mp1 m22 —mip mi1
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cFxrf=rxc,
(M *xc) ' =c*xM*,
rxM*=M"xr*.
Therefore for any 2-dimensional row and column veciotsand any 2< 2 matrix M
r¥Msxc=F*sMxc) =c"«M* xr".

The adjointH*(F) of the hessian is given by

3°F _9°F F F
* 2 v OX VY - X
H*(F) = ( PO ) = (_; [ ) = —V(Tan(F)).

T axdy ax2 Y o

Moreover, by construction, the adjoint of the gradient is the tangent and the adjoint of the tangent is the
negative of the gradient—that is,

V(F) =Tan(F)",
Tar'(F) = —V(F)'.
Therefore, applying the adjoint operator to the curvature formula
Tan(F)  H(F) = Tan(F)"
IVF|3
generates the following adjoint hessian formula for the curvature of an implicit planar curve:

k=

Adjoint hessian formula

Fyy —Fy .
VFxH*(F)«VFT (B F)x (2 )+ ()
|IVF|3 B (F2+ F2)3/2

k= (3.5)

Again it is easy to verify directly that the right hand side of Eq. (3.5) agrees with the right hand side
of Eq. (3.1), so Eq. (3.5) is indeed yet another valid expression for the curvature of an implicit planar
curve. Moreover, this expression in terms of the gradient and the adjoint of the hessian readily extends to
implicit surfaces, so we can expect this adjoint hessian formula to represent the curvature of an implicit
surface. We shall return to this topic again in Section 4.

The adjoint hessian formula may extend to one of the two curvatures—mean or Gaussian—for an
implicit surface, but we need still another equivalent curvature expression if we hope to represent the
other curvature for implicit surfaces. Also we might like to work directly with the hessian rather than
with the adjoint of the hessian. Fortunately there is another equivalent formulation for the curvature of
an implicit planar curve that uses only the gradient and the hessian.

To eliminateH*(F) from Eq. (3.5), simply observe that

H(F)+ H*(F) =Tracq H(F))I,

wherel is the identity matrix. Now substituting fad*(F) in EqQ. (3.5) leads to the following expression
for the curvature:
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Hessian formula

_VFxH(F)*VF' —|VF|? Trace(H(F))
B IVF|3

(3.6)
We close this section with two additional alternative expressions for the curvature of an implicit planar

curve that will show up again when we study curvature for implicit surfaces. As usual the validity of these
formulas can be verified by direct computation of the right hand sides.

Determinant computation

_ Det(’5y ')

3.7
NFaE 3.7
Divergence formula
VF
k=—-VeN(F)=-Ve|l——). 3.8
NP ==+ (57) &9

The divergence of the unit normal is often taken as the definition of the curvature for an implicit
planar curve. We have not used this definition here because we wanted to develop curvature formulas
for implicit curves directly from known curvature formulas for parametric curves. Also, although of
theoretical interest, this divergence formula is less practical as a computational tool than many of the
other expressions for the curvature developed in this section.

4, Curvatureformulasfor implicit surfaces

We expect curvature formulas for implicit surfacEsx, y, z) = 0, just like curvature formulas for
implicit curves F (x, y) = 0, to depend only on the gradiewtr’, the hessiard (F), and the adjoint of
the hessiarlH*(F). As with curves, we shall adopt the following notation for surfaces:

VF:(% % % = (Fx Fy F,),
3%F  3°F  9°F
dx2 dxdy  0x0z Fy ny sz
HF)=| 25 5F FF _(F vy Fyz>:V(VF),

1

dydx ay? dydz yx
9%°F  9%F  9°F
0z0x az0y 922

Cofacto(F,,) Cofacto(F,,) CofactoKF,;,)
H*(F) = ( )

sz Fzy Fzz

Cofacto(F,,) Cofacto(F,,) CofactoKF,,)
Cofactol(sz) Cofacto(F,,) Cofacto(F;)

Fy)F FZ\ Fyzex_Fnyzz Fnyzv Fvazx
szFzy x}Fzz Fxszz_szsz nysz Fxszy
nyFyz sz»y Fnyxz_FxxFyz FxxFyy nyFyx
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Here againv applied to a row vector means take the gradient of each component and write these com-
ponent gradients in a matrix as consecutive column vectors. As with curves, the gfadienparallel
to the normal of the surfacE(x, y, z) = 0. Therefore, the unit normal is given by

NF) = VE _ (R FF)

IVEL JF2+ F2 4 F2

With this notation in hand, we are now ready to develop curvature formulas for implicit surfaces.
The following curvature formulas for implicit surfaces appear in (Spivak, 1975, vol. 3, p. 204) (Spivak
gives only the expressions on the far right); see also (Knoblauch, 1913, pp. 89-94):

Gaussian curvature

_VF*H*(F)*VFT |H(F) VFT‘ (41)
‘- IVF|* T |VFJ '
Mean curvature
_VExHE) VFT — |VF[2TracgH) _ —coeff(r)in| #(E)-4 VET| 42)

2|VF|3 N 2|VF|3

Notice that Eq. (4.1) for Gaussian curvature is an extension to surfaces of the adjoint hessian formula
(Eq. (3.5)) for the curvature of implicit planar curves. The normalizing fagtar|* that appears in the
denominator insures thaf'(x, y, z) = 0 has the same curvature Bgx, y, z) = 0. In addition, Eq. (4.2)
for the mean curvature is an extension to implicit surfaces of the hessian formula (Eqg. (3.6)) for the cur-
vature of implicit planar curves. The factor of two in the denominator occurs because the mean curvature
is the average of the two principal curvatures.

The principal curvaturek,, k, can be computed from the mean and Gaussian curvakiyeX s by
the standard formula

ki, ko= Ky £,/ K2 — Kg. (4.3)

One can also verify that

—rootd | H(F)—r1 VFT
T (K
IVF]|
by using Egs. (4.1) and (4.2) to demonstrate that Eq. (4.4) is equivalent to Eq. (4.3).
We shall now derive Egs. (4.1) and (4.2) for the Gaussian and mean curvatures of implicit surfaces
from the corresponding curvature formulas for parametric surfaces.

(4.4)

Theorem 4.1.
_ VFxH*(F)xVF
B |VF|4
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Proof. We shall only consider regular points on the implicit surface—points widtes 0—since the
Gaussian curvature in not defined at points on the surface that are not regular. By the implicit function
theorem, ifV F # 0, then the surface has a local parametrizaftgs, ¢). Let

Py x Py
|P; x Py|’
thenN is the unit normal to the surface. Therefore by Corollary 2.2
(Ps x P;) ® (N X Ny)
- 1P, x P2
We shall now show how to transform the right hand side of this equation into the right hand side of
Eqg. (4.1). Since the unit normal to the surface is also given by the formula

N=N(s,t)=

K¢

VF
N=——,
IVF|
it follows by the chain rule that ifi = s, ¢, then
P,x« H(F)
.= ———— +term parallel tov F.
|[VF|
Hence
P,x H(F)) x (Py x H(F .
N x N; = (2 () x (B () + terms perpendicular t& F.

IVF|?

But for all 3-dimensional vectors, » and all 3x 3 matricesM,
(axM)x (bxM)=(axb)xM*,

whereM* denotes the adjoint af/. Therefore

(Ps x P)x H*(F)

Ny x N; = VEL + terms perpendicular t¥ F.
Now sinceV F and P; x P, are both parallel to the surface normal, there is a congtanth that
P, x P, =AVF.
Thus,

MVF s« H*(F)x«VFT
(Ps X Pt).(Ns XNt):

|VF|? ’
[P, x P,|>=M\|VF|2
Therefore
_(Pix P)e(Nyx N) VFxH*(F)xVF' .
- Pox P2 IVF4

Corollary 4.2.

H(F) VFT|

VF 0

IVF|*
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Proof. This corollary follows by expanding the right-hand side and verifying that the result gives the
same expression as the expansion of the right-hand side in the curvature formula in Theorem 4.1.

Theorem 4.3.
Ko VFxH(F)«VFT — |VF|?Tracg H)
M= 2IVF3 '

Proof. Again we shall only consider regular points on the implicit surface—points wkidtez 0—
since the mean curvature in not defined at points on the surface that are not regular. By the implicit
function theorem, iV F # 0, then the surface has a local parametrizak@m, ¢). Let

Py x P, .

|Py x Py|’

then N is the unit normal to the surface. Therefore by Corollary 2.4
_(Py x P) e (P, x Ny) — (Py x Ny))

2| P, x P;|? ’

We shall now show how to transform the right-hand side of this equation into the right-hand side of
EqQ. (4.2). Since the unit normal to the surface is also given by the formula

N=N(.t)=

Ku

VF
N=——,
IVF|
it follows by the chain rule exactly as in the proof of Theorem 4.1 thatfs, ¢, then
P, H(F)
. = ———— +term parallel tov F.
IVF|
Hence
P, x (P; x H(F)) .
P, x Ny = V| + terms perpendicular t§ F,
P, x (P, H(F .
Py x N, = — i (£)) + terms perpendicular t¥ F,
IVF|
SO
P, P, xH(F))— P P« H(F .
P xN,— P, x N, = = (P x H(F)) x (B x H(F) + terms perpendicular t§ F.

|VF|
But for all 3-dimensional vectors, b and all symmetric 3 3 matricesM,
bx(axM)—ax((bxM)=(axb)xM—Trac&M)(a x b).

(Since this identity is not well known, and is perhaps even new, we verified this idenhtgtimematica
using symbolic computation.) Therefore

(Ps x Pr)« H(F) — Trac&H(F))(P; x P,)
B VF]|
Now sinceV F and P; x P; are both parallel to the surface normal, there is a congtanth that

P, x P,=A\VF.

PtXNY_PsXNt

+ terms perpendicular tg F.
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Thus

MVF s« H(F)x«VFT —A2Trac€ H(F))|VF|?

(Py x P) e ((P x N;) = (Ps x Ny)) = V| )

[P, x P,|>=M\|VF|2

Therefore
Ko (Py x P) o (Pyx N)— (P, x Ny)) VFxH(F)«VF' —|VF|*Trac&H)
" 2|P; x P|? B 2IVF)3 '
Corollary 4.4.
in| H(F)—AI VFT
o — coeff(h) in| #E)-41 VI
2|VF3

Proof. This corollary follows by expanding the right hand side and verifying that the result gives the
same expression as the expansion of the right hand side in the curvature formula in Theorem 4.3.

Corollary 4.5 (Divergence formula for mean curvature)

Ky=—-VeN(F)=-V (E
M= [ ] = [ |VF|)

Proof. Again this corollary follows by expanding the right hand side and verifying that the result gives
the same expression as the expansion of the right hand side in the curvature formula in Theorem 4.3.

The divergence of the unit normal is often taken as the definition of the mean curvature for implicit
surfaces. This divergence formula mimics the corresponding divergence formula for the curvature of
an implicit curve. We have not used this definition here because, just as in the curve case, we wanted
to develop the mean curvature formula for implicit surfaces directly from the well-known formula for
the mean curvature of parametric surfaces. Moreover, although of theoretical interest, this divergence
formula is less practical as a computational tool than Eqg. (4.2).

Before computing some examples, let us pause here for a moment and comment upon the invariance
of these curvature formulas. The surfdcéx, y, z) = 0 is identical to the surfaceF (x, y, z) = 0 for any
constantc #£ 0. Therefore, naively, we would expect that the curvaturé of, y, z) = 0 should be the
same as the curvature of (x, y, z) = 0. For implicit curves, we saw that this invariance does not quite
hold if ¢ < 0. What about curvature invariance for implicit surfaces?

For Gaussian curvature, this invariance does indeed hold:AD, then replacingF by ¢F on the
right hand side of Eq. (4.1) introduces a factorcdfin both the numerator and the denominator, so the
Gaussian curvatur& is unchanged.

The mean curvature, however, behaves more like the curvature of implicit planar cuevedd Jthen
replacingF by cF on the right hand side of Eq. (4.2) introduces a factor®in both the numerator
and the denominator, so the mean curvatirg is unchanged. However, replacifg by —F on the
right hand side of Eq. (4.2) changes the sign of the numerator, but not the sign of the denominator, thus
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changing the sign oK ,. Of course, replacing” by —F also changes the direction of the unit normal
N(F)=VF/|VF|. Therefore the mean curvature vector,

Ky=KyuN(F)=KyVF/|VF]|

is invariant, but the sign of the mean curvatifg depends on the choice of the direction of the unit nor-
mal, which, in turn, depends on the signfof This sigh dependence is exactly the same sign dependence
we observed in the curvature formula for implicit planar curves. In this way the mean curvature, more
than the Gaussian curvature, resembles the curvature of implicit planar curves. The divergence formula
is yet another way that the mean curvature more closely mimics the behavior of the curvature of implicit
planar curves.

Example 4.1 (Spheres We can check our curvature formulas on the spheres
F(x,y,2)=x*+y*+z*— R*=0.
To compute the mean and Gaussian curvatures, we need

VF = (F, F, F,) = (2x 2y 22),

Fo. F. Fy. 2 00
H(F)=<Fyx Fy, Fyz)=<0 2 o),

F, F, F. 0 0 2
Cofacto(F,,) Cofacto(F,,) Cofacto(F,,) 4 0 O
H*(F)= (Cofacto(Fyx) Cofacto(Fy,) Cofacto(FyZ)> :( 4 O),
Cofacto(F,,) Cofacto(F,,) Cofacto(F,,) 0 0 4
Tracg H (F)) =6.
Gaussian curvature
VF+«H*(F)«VFT
K¢ = ,
|IVF|4
400, ,2x
o EE6) 16+t 1
7 T (@x2+4y2+ 4722 16(x2+ y2+ 722 RZ
Mean curvature
P VF+«H(F)«VF" —|VF|?TracdH)
M= 2IVF3 ’
2x 2y 22)(890)(2) — 6(4x2 + 4y2 + 422
P 2(929)(2)) —6(4x® +4y° + <) 8RZ-24R? 1
M 2(4x2 4 4y2 4 472)372 2(8R3) R’

Notice that the mean curvature here is negative, but notice to&tﬁa& (2x, 2y, 2z) is the outward
pointing normal. Thus, as one would expect, the mean curvature Wegtet K,V F/|V F| points into
the sphere and has magnitudgy,| = 1/R.
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Example 4.2 (Explicit function$. Surfaces defined by explicit functions are special cases both of para-
metric and of implicit surfaces. Therefore, we can check our curvature formulas on the explicitly defined
surfaces:

F(x,y,2)=z— f(x,y,2)=0.

To compute the mean and Gaussian curvatures, we first calculate

VE=(f [y D,

fxx fxy 0
H(F) = fyx fyy 0 s
0 0O O
0O 0 0
H*(F) = (0 0 0 ) ,
O O Det(H(F))
Tracd H (F)) = Tracq H(f)).
Gaussian curvature
VF s« H*(F)«*VFT  Det(H(f))
K¢ = = .
[VF|* (IVfIZ+1)2
Mean curvature
VF« H(F)«VFT —|VF|?>Tracg H)
Ky= > 3 ,
[VF|
Vi« H(f)*VfT—(Vf?+1) TracgH(f))
B 2(VfI2+1)%2 '

The reader can easily verify that we get exactly these same expressions for the mean and Gaussian
curvatures using the classical formulas presented in Section 2.2 for the mean and Gaussian curvature of
a parametric surface.

Ky

Our formulas for Gaussian and mean curvature readily extend to implicit hypersurfaces in higher
dimensions. IfF (x4, ..., x,41) = 0 represents an implicit-dimensional hypersurface lying in &n-+ 1)-
dimensional space, then we have the following general formulas for the Gaussian and mean curvatures
(Dombrowski, 1968, pp. 167, 168; Gromoll et al., 1975, pp. 1091-1111):

JVFxH*(F)xVFT
(Kc)n(F)=(=1)

|VF|”+2 ’
VF« H(F)«VF" — |VF|?Tracg H(F))
(Ky)n(F) = P .

Notice that the only essential differences between mean and Gaussian curvature formulas for surfaces in
3-dimensions and mean and Gaussian curvature formulas for hypersurfgees it)-dimensions are
the normalizations in the denominators.
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Example 4.3 (Hyperspherels We can check these curvature formulas on the hyperspl§éiiask™+!
S xZ4 .+ x2 - R*=0.
Here we easily compute
H(S") = Diag(2),
H*(S") = Diag(2"),
Tracg H(S")) =2(n + 1).
Therefore

. . 2)1+2R2 (_1)11
(KG)a(S") =(=1) =

(2R)n+2 - Rn
. BR*—(8n+8R* 1
(Kiu(8") = = ==

5. Curvature and torsion formulas for implicit space curves and beyond

Implicit space curves are defined by the intersection of two implicit surfaces:
[F(x.y.2)=0}n{G(x,y.2)=0}.

Since the gradientS F andV G are normal to their respective surfaces, their cross product is tangent to
the intersection curve. As with planar curves, we shall adopt the following notation for space curves:
Curve tangent

Tan(F,G)=VF x VG. (5.1)
Unit tangent
VF x VG
T(F,G)= —— =17 (5.2)
IVF x VG|

5.1. Curvature for implicit space curves

For implicit planar curves, we showed in Section 3 (Eq. (3.4)) that the curvature is given by
_|(Tan(F) = V(Tan(F))) x Tan(F)|
B | Tan(F)|3 ‘
Since we derived this curvature formula from the Frenet equations, this same curvature formula is also
valid for space curves. Substituting Eq. (5.1) for &R we arrive at the following curvature formula

for implicit space curves:

_I(VF xVG)*V(VF x VG)) x (VF x VG)|
B IVF x VG |3 '

k (3.4)

k (5.3)




R. Goldman / Computer Aided Geometric Design 22 (2005) 632658 649

Example5.1 (Spheres) Cylinderg. We can check this curvature formula on circles generated by spheres
intersecting cylinders tangentially from the inside. Consider the following surfaces:

Spheres Cylinders
F(x,y,2)=x2+y?+7z2— R>=0, G(x,y,z2) =x°+y>—R?>=0,
VF = (2x 2y 27), VG = (2x 2y 0).

The tangents to the intersection curve are given by
Tan(F,G) =VF x VG = (—4yz 4xz 0).

Hence

IVF x VG| = (1622(x* + y%)*? = 64°R?,

0 4 0
V(VFXVG)=<—4Z 0 0),

—4y 4x O
0 4 O
(VF x VG)* V(VF x VG) = (—4yz 4xz 0) % (—4z 0 o) = (—16xz%> —16yz? 0),
-4y 4x O

|((VF x VG) % V(VF x VG)) x (VF x VG)| = |(—16xz? —16yz? 0) x (—4yz 4xz 0)]
=|(0 0 —64>(x*+)?%))| = 64>R%.
Therefore, as expected,

‘ |((VF x VG)xV(VF x VG)) x (VF x VG)| _ 64°R?> 1
N IVF x VG|3 "~ 643R® R’

We would like to extend our curvature formula—Eq. (5.3)—for implicit space curves to a curvature
formula for implicit curves in(n + 1)-dimensions—that is, to curves generated by the intersectian of
implicit equations:

{Fi(x1, ..., x000) =0} N N {F(x1, o X0

However, in order to generalize Eq. (5.3), we first need to generalize the cross product from 3-dimensions
to (n + 1)-dimensions. Actually there are two ways to extend the cross product from 3-dimensions to
(n + 1)-dimensions and we shall require both techniques.

The first cross product in Eg. (5.3) is used to compute the tangent to the intersection curve. Recall that
the gradients

VFi=(Fry, ..., Fig), ooy VE, = Fuxgs ooy Fax,)

are normal to their respective hypersurfaces. Therefore the tangent to the intersection curve is a vector
perpendicular to each of these gradient vectors.
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The extension of the cross product(o+ 1)-dimensions that generates a vector perpendicular to a
collection ofn vectors is given by a determinant. Let= (eq, .. ., e,41) be the canonical basis f&"+1,
wheree; is the vector that has a one in tité position and a zero everywhere else. Then

e €1 cee 6y
VF; lel S len+1
Tan(Fy, ..., F,) = Det . = Det .
VF, Fox, v Faxyn
This expression for Tai, .. ., F,) is perpendicular t&/ Fy, . .., VF, because taking the dot product of
Tan(Fy,...,, F,) with VF; is equivalent to substituting F; for ¢, and the determinant of a matrix with

two identical rows is identically zero.
The other cross product in Eg. (5.3)—corresponding to the cross product in Eq. (3.1)—is the cross
product of two, rather than, vectors. To generalize this cross product from vectors in 3-dimensions to
vectors in(n + 1)-dimensions, we introduce the wedge product (Northcott, 1984). The wedge product of
two vectors in ar(n 4+ 1)-dimensional space spanneddy..., ¢,,1 iS a vector in a space of dimension
("$*) spanned by a new collection of vectors denoteddy\ ¢;}, wherei < j. Letu =uiey + -+ +
Upi1€41 andv =v1€ + - - - + v,416,41. Then we define
u; Uuj

UAV= (it 1€)AL ) =) | T @A)

i<j ! J

Notice that the wedge product, just like the cross product, is anti-commutative and distributes through
addition.

Actually to extend Eg. (5.3), we need only compute the magnitude of the wedge product. The magni-
tude of the wedge product is given by the formula

2

2 u; Uj
|M/\v|2=|(ulel+"'+un+len+l)/\(Ulel+"'+vn+len+l)|=E o v
. i J
i<j
Notice that
u w2 2
i 1 Z 2 Z 2 Z
Zvi v; _< ui)( Uj)_( ukvk)'
i<j i j k

Therefore, much like the cross product, wedge product satisfies the identity
lu A v[? = |ul?v]? — (u e v)2

Using this identity, we can avoid altogether the computatiom ofv. Thus in the curvature formula we
present below, the wedge product is used only as a device to compress the notation.

The curvature formula for a curve defined by the intersectiom iofiplicit hypersurfacesd (xq, ...,
X1 =0, ..., Fy(x1,...,x,41) = 0 now becomes
a | Tan(Fy, ..., F)[3
whereV(Tan(Fy, ..., F,)) is interpreted in the usual fashion to mean that we take the gradient of each
component of Ta¢Fy, ..., F,) and write these gradients in a matrix as consecutive column vectors.

k , (5.4)
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Example5.2 (3-spheren 2-spheren cylinder). We can check this curvature formula on circles generated
by 3-spheres intersecting 2-spheres intersecting cylinders tangentially. Consider the following surfaces:

3-Spheres
Fi(x,y,z,w) = x*+y? + 722+ w? — R*=0,
VF = 2x 2y 2z 2w).

2-Spheres
FZ(xay,Z,w)Ex2+y2+ZZ—R2=0,
VF,=(2x 2y 2z 0).

Cylinders
F3(x,y,z,w)=x*+y>— R*=0,
VF3=(2x 2y 0 0).

The tangents to the intersection curve are given by

e €1 (] (] éy
. VFE | _ |2 2y 2z 2w ]| _
Tan(Fy, F», F3) = Det vE | =l2c 2y 22 o |= (Byzw)er + (Bxzw)e.
VF; 2x 2y 0 O
Hence
|Tan(Fy, F, F3)|* = 512:%w3R?,
0 &w 0 O
| 8w 0O 0O
—8yz 8z 0 O
0 &w 0 O
8w 0 0 O
Tan(Fy, F», F3) * V(Tan(Fy, F>, F3)) = (—8yzw 8xzw 0 0) * “8yw 8w 0 O
—8yz 8z 0 O

= —(64z2w2x)el — (64z2w2y)ez,
(Tan(Fy, F», F3) * V(Tan(Fy, F», F3))) A Tan(Fy, F2, F3)
= (—(64z2w2x)el - (64z2w2y)ez) A (—(8yzw)el + (8xzw)eg)
= —(512%w3R?)(e1 A €2).
Therefore, as expected,

|(Tan(Fy, Fp, Fy) + V(Tan(Fy, Fp, Fy))) ATan(Fy, Fy, Fy)| _ 512°w®R? _ 1
| Tan(Fy, Fa, F3)[° T 5123y3R3 T R

k=
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5.2. Torsion for implicit space curves

To develop a closed form expression for the torsion of an implicit space curve, we begin, as usual, with
a classical formula for the torsion of a parametric curve. In Section 2.1, Table 1 provides four formulas
for the torsion of a space curve in terms of the unit tangent, the unit normal, and their derivatives. For
implicit space curves, however, we know only the unit tangent (Eq. (5.2)); therefore only the last formula
in Table 1 is readily applied. Thus starting with
dar &1
_ De(T - 37)
T=—"77 )
k2
VF x VG
I'(F.G)=<S5s—o~
|IVF x VG|

we shall now derive a closed expression for the torsion of an implicit space curve.

Theorem 5.1 (Torsion of an implicit space curve)
T =

, 5.5
|T* x T*|2 (5.5)

where

T*=VF x VG,
T* =T*%«VT*=(VF x VG)* V(VF x VG),
T =T*« V(VT*) « T*T + T* %« VT* % VT*
=(VF x VG)* V(V(VF x VG)) * (VF x VG)'
+(VF xVG)*V(VF x VG) %« V(VF x VG).

HereV applied to a matrix such a8 7* means apply to each column vector of the matrix to generate
a list of three consecutive matrices.

Proof. We start with the formula

dr &t
B Det(T & <)
=
k2

To compute the determinant in the numerator, observe that

T*

T =

| 7|
Moreover, by the chain rule,
drx T*%xVT*
=TVl = ———
ds |T*]

Therefore, by the quotient rule,

dar T xvre (710 1
ds ~ |T*|2 |T*|2 - |T*|2

+ term parallel tor *.
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Differentiating one more time by the chain rule and the quotient rule, we find that
T T« V(VT*)«T*T  T*xVT*xVT*
ds2 |T*|3 |T*|3

T* % *
+ terms parallel tow + terms parallel td"*
= - + terms parallel toT**—VT* + terms parallel td™*
VRE P 7| P '
Therefore

_ Det(T 9T %g) _ Del(T* T T*)
k2 k2|T*|6
But by Eq. (5.3),
I((VF x VG)* V(VF x VG)) x (VE x VG2 |T* x T*?
- IVF x VG| — T

k2

Hence
_ Det(T* T T***)
- |T* X T**IZ

a

653

Example 5.3 (Explicit functions of one variab)e Space curves defined by the intersection of explicit
functions of a single variable are special cases of both parametric and implicit curves. Therefore, we can

check our torsion formula on the intersection of two explicitly defined surfaces:

Equations Gradients
Fx,y, )=y — f(x)=0, VE=(f"10),
G(x,y,z2)=z—¢gx)=0, VG=(g'01).

Now we have the following matrices:

T*"=VFxVG=1 —f" —g"),
0 _f// _g//
VIi*={0 0 0],

O 0 O
0 0 O\ /—f” O O\ /—¢” 0 O
V(VT*):((O 0 o)( 0 0 o)( 0 0 o)),
ooo\o oo\o 00
VT*%VT*=0.

To compute the numerator of the torsion, observe that

0 _f// _g//
T =T*xVT*=1 —f —¢)*x(0 0 0 |=@0—f"g",
0 O 0

T =T* %« V(VT*) « T*T
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0 0 O\ /—f” O O\ /—g” 0 O 1
-y _gs*((o 0 o)( 0 o o)( o o o))*(_f/)
ooo\o oo\o 00 —g

— (0 _f/// _g///)‘
Hence
1 0 0
Det(T* T** T***) — Det(_f/ _f// _f///) — f//g/// _ f///g//-
_g/ _g// _g///

Similarly, for the denominator we have

|T* % T**|2: \(1 _f/ _g/) % (0 _f// _g//)|2 — |f//g/ _ f/g// g// _f//|2
— (f//g/ _ f/g//)Z + (g//)z + (f//)Z'
Therefore
. Det(T* T** T***) . f//g/// _ f///g//
T x T (f"g' — ['8")2+ ()2 + (f)?
The reader can easily verify that in this case we get exactly the same expression for the torsion using the
classical equation given in Section 2.1 for the torsion of a parametric curve:

_ Det(P' P" P")
- |P’x P2
6. Summary

Here we collect in one location for easy reference all of our curvature formulas for implicit curves and
surfaces.

6.1. Curvature formulas for implicit planar curves

Notation
Implicit curve: F(x, y) =0.
Normal: VF = (F,, F)).
Tangent: TaF) =k x VF = (—F,, F,).
Hessian:

_(Fex Foy) _
H(F)_(Fyx Fyy>_V(VF).

Adjoint of the hessian:

H*(F) = (_Fl-;y _FFW) = —V(Tan(F)).
Xy XX
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Curvature formulas
Tan(F) « H(F) = Tan(F)"

k= IVFJ? ’
Det((Tan(F) « H(F))" VFT)
N IVFJ? ’
k__VF*H*(F)*VFT
IVF|3 ’
|H(F) VF
C=TVER IVFI3 ’

6.2. Curvature formulas in co-dimension 1

Notation
Implicit hypersurfaceF (xy, . ..
GradientVF = (F,, ..., Fy, ).
Hessian:

Fxlxl cee FX1Xn+1
H(F)= :
Fxn+1x1 Fxn+1xn+l
Adjoint of the hessian:
Cofacto( Fy,,,)
H*(F) = :
Cofacto(Fy, ;)

Gaussian curvature
VF s« H*(F)«VFT
- IVF? ’
VFx H*(F)« VFT
N IVF* ’

VF s« H*(F)« VFT

) xn+l) - o

Cofacto( F,

Ko),(F)= (D"

(K)u(F) = (—1) ST
‘H(F) VFT’

1

(Kg)n = (=1 VEpE

Mean curvature
_ VFxH(F)*«VFT —

¢ — Tan(F) x V(Tan(F)) VFT
IVF? ’
_ Det((Tan(F) + V(Tan(F)))" (Tan(F))" )
| Tan(F)[3

_ VFxH(F)*VFT —|VF|? Trace(H(F))

VFP
VF
k=—Ve| ——].
va)

= V(VF).

Cofactox Fy,y, )

n+lxn+1)

[VF|? Trace(H(F))

IVF|3
VF+«H(F)«VFT —

|[VF|?°Trac&H (F))

Ky =
M 2IVF3

655
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VF x H(F)«VFT — |VF[2Trac H(F))

Ky)u(F) =
(Ky)n(F) AV
n—1 n—1\; _ T

Koy, = (DT coRtiin| O v

" n|VF|3 ’
&) v VF

n=—Vel——].

" IVF|

6.3. Curvature and torsion formulas for implicit space curves

Notation
Implicit space curve{F (x, y,z) =0} N{G(x, y,z) =0}.
Curve tangentT*=VF x VG.
Additional notation:

o T* =T*+xVT*=(VF x VG)* V(VF x VG)
o T =T*xV(VT*)« T*T + T*%« VT*% VT*
=(VF xVG)*« V(V(VF x VG)) % (VF x VG)T
+(VF x VG) % V(VF x VG) * V(VF x VG).

Curvature and torsion formulas
Parametric curves:

— |P' x P”| _ Det(P’ P” P")
|P3 |P’ x P"|?
Implicit curves:
|T* x T**| Det(T* T** T**)
TR T T TP

6.4. Curvature formulas for implicit curves in + 1)-dimensions

Notation
Implicit curve: {F1(x1, ..., x,11) =0 N ---N{F,(x1, ..., x,41) = 0}.
Gradients of scalars? F1 = (Fyy, ..., Fio, 1), -, VFy = (Fuxps o5 Fux, ).
Gradients of vectorsV(Fy, ..., F,) = (VF)T, ..., (VE)").

Curvature formulas
Curves in 2-dimensions:

 _ Det(Tan(F)  V(Tan(F))" (Tan(F)")
N | Tan(F)P? ’
Tan(F) = (—F,. F).

Curves in 3-dimensions:
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|(Tan(F, G) * V(Tan(F, G))) x Tan(F, G)|
| Tan(F, G)[3
Tan(F,G) = VF x VG.

k=

’

Curves in(n + 1)-dimensions:

_ |(Tar(Fl"Fl‘l)*v(TarKFlﬂ’Fl‘l)))/\Tar(Fla’Fn)l
a | Tan(Fy. ..., F)[3

Tan(Fy, ..., F,) =Det(e" (VF)" ... (VF)"),

k

’

lu Av|? = [ul?v)? — (u e )2

7. Open questions

Although we have presented many elegant curvature formulas for implicit curves and surfaces, there
still remains some work to be done. We close with a few open problems for future research.

Problem 1. Derive closed formulas for higher order curvatures for implicit curve&in- 1)-dimensions

Here we have derived closed formulas only for the curvature in 1)-dimensions and for the torsion in
3-dimensions. Can elegant closed formulas be derived for the higher order analogues of the torsion for
implicit curves in(n 4+ 1)-dimensions?

Problem 2. Develop curvature formulas for curves lying on implicit surfaddere we have developed
curvature formulas only for curves lying indimensional space. What can be said about the curvature
for curves lying on implicit surfaces?

Problem 3. Compute curvature formulas for implicit surfaces(in+ 1)-dimensions with co-dimension

> 1. Apparently at least some of these formulas are known in the German literature (Dombrowski, 1968,
p. 164), but | have been unable to derive these expressions or to find these formulas in an easily accessible
form.

Problem 4. Investigate numerical efficiency and robustn&¥e.have provided many different equivalent
formulations for the curvature of an implicit planar curve. In theory, all of these expression are mathe-
matically equivalent, but, in practice, some of these expressions may be more computationally efficient
or numerically robust for performing actual calculations. We have not considered these issues here, but
these questions should be looked at in the future.
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