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Abstract

Curvature formulas for implicit curves and surfaces are derived from the classical curvature formulas in
ential Geometry for parametric curves and surfaces. These closed formulas include curvature for implic
curves, curvature and torsion for implicit space curves, and mean and Gaussian curvature for implicit s
Some extensions of these curvature formulas to higher dimensions are also provided.
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1. Introduction

Curvature formulas for parametrically defined curves and surfaces are well-known both in the c
literature on Differential Geometry (Spivak, 1975; Stoker, 1969; Struik, 1950) and in the contem
literature on Geometric Modeling (Farin, 2002; Hoschek and Lasser, 1993).

Curvature formulas for implicitly defined curves and surfaces are more scattered and harde
cate. In the classical geometry literature, a curvature formula for implicit planar curves is prese
(Fulton, 1974); an algorithm, but no explicit formulas, for finding the curvature and torsion of im
itly defined space curves is provided in (Willmore, 1959). Mean and Gaussian curvature formu
implicit surfaces can be found in (Spivak, 1975, vol. 3), but, somewhat surprisingly, almost no
else in Differential Geometry texts in the English language. German geometry papers and tex
curvature formulas for implicit surfaces seem to be more common (Dombrowski, 1968; Gromoll
1975; Knoblauch, 1888, 1913), but these references remain largely inaccessible to most English s
researchers in Geometric Modeling.

E-mail address:rng@cs.rice.edu.
0167-8396/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2005.06.005
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Nevertheless, curvature formulas for implicitly defined curves and surfaces are important in G
ric Modeling applications, and many of these formulas do appear scattered throughout the Ge
Modeling literature. Curvature formulas for implicit curves and surfaces in normal form appear in
menn, 1999). A curvature formula for arbitrary implicit planar curves appears in (Bajaj and Kim,
Blinn, 1997); mean and Gaussian curvature formulas for arbitrary implicitly defined surfaces a
nished by (Belyaev et al., 1998; Turkiyyah et al., 1997). To derive these curvature formulas for im
surfaces, (Belyaev et al., 1998) refer to (Turkiyyah et al., 1997) who in turn refer to (Spivak,
vol. 3). Procedures for finding curvature and torsion formulas for implicit space curves as well as
and Gaussian curvature formulas for implicit surfaces are given in (Patrikalakis and Maekawa, 20
explicit closed formulas are not provided.

Curvature formulas for implicit curves and surfaces also appear in some recent texts on le
methods (Osher and Fedkiw, 2003; Sethian, 1999). A curvature formula for implicit planar cur
presented in both of these texts; (Osher and Fedkiw, 2003) also contains explicit formulas for th
and Gaussian curvature of implicit surfaces.

The purpose of this paper is to provide a service to the Geometric Modeling community by c
ing in one easily accessible place curvature formulas for implicitly defined curves and surfaces. I
to better understand the relationships between curvature formulas in different dimensions and d
co-dimensions, we shall develop, in each case, not just one closed formula, but several equivalen
sions. We shall also provide a bridge between the parametric and implicit formulations by derivin
curvature formulas for implicit curves and surfaces from the more commonly known curvature for
for parametric curves and surfaces.

In Section 2, we review the classical curvature formulas for parametric curves and surfaces.
these formulas in Section 3 to derive curvature formulas for implicit planar curves and in Sectio
derive mean and Gaussian curvature formulas for implicit surfaces. Section 5 is devoted to deriv
vature and torsion formulas for implicit space curves. In Section 6 we collect all our curvature for
for implicit curves and surfaces together in one easily accessible location. Readers interested on
formulas, but not their derivations, can skip directly to Section 6. We close in Section 7 with a few
questions for future research.

2. Curvature formulas for parametric curves and surfaces

For planar curves, curvature has several equivalent definitions:

(i) amount of deviation of the curve from the tangent line;
(ii) rate of change of the tangent direction;

(iii) reciprocal of the radius of the osculating circle;
(iv) element of area of circular image/element of arclength.

For surfaces, curvature is more complicated. In analogy with curves, curvature for surfaces
capture the deviation of the surface from the tangent plane. But, unlike planar curves, there is m
one way to measure this deviation. The shape of the osculating paraboloid gives a rough measur
the surface deviates locally from the tangent plane. More precise information is provided by the
and Gaussian curvatures.



634 R. Goldman / Computer Aided Geometric Design 22 (2005) 632–658

nd sur-

uations
ors and
hen we
Gaussian curvature

(i) product of the principal curvatures;
(ii) element of area of spherical image/element of surface area.

Mean curvature

(iii) average of the principal curvatures;
(iv) rate of change of surface area under small deformations in the normal direction.

From these first principles, explicit curvature formulas can be derived for parametric curves a
faces. We shall review these formulas in the following two subsections.

2.1. Curvature formulas for parametric curves

Consider a parametric curveP(s) in 3-dimensions parametrized by arc length. LetP(t) be any other
parametrization ofP , and letP ′, P ′′, andP ′′′ denote the first, second, and third derivatives ofP with
respect tot . The unit tangent vector ofP is given by

T = dP

ds
= P ′

|P ′| .

Therefore, in 3-dimensions, the curvature

k =
∣∣∣∣dT

ds

∣∣∣∣ = |P ′ × P ′′|
|P ′| .

In 2-dimensions, this curvature formula reduces to

k =
∣∣∣∣dT

ds

∣∣∣∣ = |Det(P ′ P ′′)|
|P ′|3 .

Torsion measures deviation from the osculating plane. We shall see shortly that the torsion

τ = Det
(
T dT

ds
d2T

ds2

)
k2

= Det(P ′ P ′′ P ′′′)
|P ′ × P ′′|2 .

The Frenet equations (see below) express the derivatives of the tangent(T ), normal(N), and binormal
(T ×N) in terms of the tangent, normal, binormal, curvature and torsion. We can use the Frenet eq
to generate explicit formulas for the curvature and torsion in terms of the tangent and normal vect
their derivatives (see Table 1). We shall make use of these explicit formulas in Sections 3 and 5, w
develop closed formulas for the curvature and torsion of implicit curves.

2.2. Curvature formulas for parametric surfaces

Let P(s, t) be a parametric surface, and letPs andPt denote the partial derivatives ofP with respect
to s andt . (Higher order derivatives will be denoted in the usual way by repeatings andt the appropriate
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Table 1
Explicit formulas for the curvature and torsion in terms of the tangent and normal vectors and their derivatives. These
follow easily from the Frenet equations

Frenet equations (Stoker, 1969) Curvature formulas Torsion formu
dT
ds

= kN k = dT
ds

· N τ = dN
ds

· (T × N)

dN
ds

= −kT + τ (T × N) k = −dN
ds

· T τ = −d(T ×N)
ds

· N
d(T ×N)

ds
= −τN k = ∣∣dT

ds
× T

∣∣ τ = Det
(
T N dN

ds

)
k = ∣∣dN

ds
× N

∣∣ if τ = 0 τ = Det
(
T dT

ds
d2T

ds2

)
k2

number of times.) The normal vector to the surface is perpendicular to the tangent vectorsPs andPt .
Therefore, the unit normal is given by

N = N(s, t) = Ps × Pt

|Ps × Pt | .
Mean and Gaussian curvature for a parametric surface are usually defined in terms of the fi

second fundamental forms of the surface. These forms are given by the following matrices (Stoker
First fundamental form:

I =
(

Ps • Ps Ps • Pt

Pt • Ps Pt • Pt

)
;

Second fundamental form:

II =
(

Pss • N Pst • N

Pts • N Ptt • N

)
= −

(
Ps • Ns Ps • Nt

Pt • Ns Pt • Nt

)
.

Notice that in our two matrices for the second fundamental formPss •N = −Ps •Ns becausePs •N =
0. DifferentiatingPs • N = 0 with respect tos yieldsPss • N + Ps • Ns = 0. The other equalities in thes
matrices for the second fundamental form can be established in a similar manner.

In terms of the first and second fundamental forms, the mean and Gaussian curvatures are c
by the expressions given below. In the formula for the mean curvature,II ∗ denotes the adjoint ofII —that
is,

II ∗ =
(

Ptt • N −Pts • N

−Pst • N Pss • N

)
=

(−Pt • Nt Pt • Ns

Ps • Nt −Ps • Ns

)
.

Gaussian curvature:

KG = Det(II )

Det(I )
.

Mean curvature:

KM = Trace(I ∗ II ∗)
2Det(I )

.

Though these curvature formulas are the classical formulas found in most standard books on D
tial Geometry (Stoker, 1969), we need to massage these formulas slightly in order to use them eff
when we study implicit surfaces.
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Lemma 2.1.

(i) Det(I ) = |Ps × Pt |2.
(ii) Det(II ) = (Ps × Pt) • (Ns × Nt).

Proof. (i) This result follows by expanding the determinant and invoking the vector identity:

(a • a)(b • b) − (a • b)2 = |a × b|2.
(ii) This result follows by expanding the determinant and invoking the vector identity:

(a • c)(b • d) − (a • d)(b • c) = (a × b) • (c × d). �
Corollary 2.2.

KG = (Ps × Pt) • (Ns × Nt)

|Ps × Pt |2 .

Lemma 2.3. Trace(I ∗ II ∗) = (Ps × Pt) • (Pt × Ns) − (Ps × Pt) • (Ps × Nt).

Proof. This result follows by computing the trace and then twice invoking the vector identity:

(a • c)(b • d) − (a • d)(b • c) = (a × b) • (c × d). �
Corollary 2.4.

KM = (Ps × Pt) • ((Pt × Ns) − (Ps × Nt))

2|Ps × Pt |2 .

3. Curvature formulas for implicit planar curves

Curvature is a second order effect—only the first and second derivatives appear in the curvat
mula for parametric curves. Therefore, for implicit planar curvesF(x, y) = 0, the curvature shoul
depend only on the gradient∇F and the hessianH(F). We shall adopt the following notation:

∇F =
( ∂F

∂x

∂F

∂y

)
= (Fx Fy),

H(F ) =



∂2F

∂x2

∂2F

∂x∂y

∂2F

∂y∂x

∂2F

∂y2


 =

(
Fxx Fxy

Fyx Fyy

)
= ∇(∇F).

Here∇ applied to a row vector means take the gradient of each component and write these com
gradients in a matrix as consecutive column vectors.

Since the gradient ofF(x, y) is perpendicular to the level curvesF(x, y) = c, the gradient∇F is
parallel to the normal ofF(x, y) = 0. Therefore we have the following formulas:

Planar implicit curves:

(1) Implicit curve:F(x, y) = 0.
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(2) Normal:∇F = (Fx,Fy).
(3) Unit normal:

N(F) = ∇F

|∇F | = (Fx,Fy)√
F 2

x + F 2
y

.

(4) Tangent: Tan(F ) = k × ∇F = (−Fy,Fx).
(5) Unit tangent:

T (F ) = Tan(F )

|Tan(F )| = (−Fy,Fx)√
F 2

x + F 2
y

.

Proposition 3.1 (Curvature formula for implicit planar curves).

k = −T (F ) ∗ H(F) ∗ T (F )T

|∇F | = −(−Fy Fx) ∗ ( Fxx Fxy

Fyx Fyy

) ∗ (−Fy

Fx

)
(F 2

x + F 2
y )3/2

. (3.1)

Proof. From the Frenet equations,

k = −dN

ds
• T .

Hence by the chain rule,

k = −
(

∂N

∂x

dx

ds
+ ∂N

∂y

dy

ds

)
• T = −T ∗ ∇N ∗ T T.

But by the quotient rule,

∇N = ∇
( ∇F

|∇F |
)

= |∇F |∇(∇F) − ∇(|∇F |)T ∗ ∇F

|∇F |2 .

Moreover

∇(∇F) = H(F),

∇F ∗ T T = ∇F • T = 0.

Therefore we conclude that

k = −T (F ) ∗ H(F) ∗ T (F )T

|∇F | . �
A word about invariance is in order here. The curveF(x, y) = 0 is identical to the curvecF (x, y) = 0

for any constantc �= 0. Therefore we would expect that the curvature ofF(x, y) = 0 should be the sam
as the curvature ofcF (x, y) = 0. If c > 0, then replacingF by cF on the right hand side of Eq. (3.1
introduces a factor ofc3 in both the numerator and the denominator, so the curvaturek is unchanged
However, replacingF by −F on the right hand side of Eq. (3.1) changes the sign of the nume
but not the sign of the denominator, thus changing the sign ofk. ReplacingF by −F also changes th
direction of the unit normalN(F) = ∇F/|∇F |. Therefore the curvature vector,

�k = kN(F ) = k∇F/|∇F |
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is invariant, but the sign of the scalar curvaturek depends on the choice of the direction of the unit norm
which, in turn, depends on the sign ofF . This sign dependence shows up in the parametric settin
well. By the Frenet equationsdT

ds
= kN . The derivativedT

ds
is an invariant; the signs ofk andN are not

invariants, but rather are mutually dependent. Nevertheless, we shall continue to focus on expres
the scalar curvaturek rather than the curvature vector�k, since it is expressions for the scalar curvat
that we plan to extend to curvature formulas for implicit space curves and implicit surfaces.

Example 3.1 (Circles). We can check our curvature formula on the circles

F(x, y) ≡ x2 + y2 − R2 = 0.

By Proposition 3.1 to compute the curvature, we need to compute

k = −(−Fy Fx) ∗ ( Fxx Fxy

Fyx Fyy

) ∗ (−Fy

Fx

)
(F 2

x + F 2
y )3/2

.

Substituting for the derivatives ofF , we find that

k = −(−2y 2x) ∗ (
2 0
0 2

) ∗ (−2y
2x

)
((2x)2 + (2y)2)3/2

= − 8(x2 + y2)

(4x2 + 4y2)3/2
= −8R2

8R3
= − 1

R
.

Notice that the curvature here is negative, but notice too that∇F = (2x,2y) is the outward pointing
normal. Thus, as one would expect, the curvature vector�k = k∇F/|∇F | points into the circle and ha
magnitude|k| = 1/R.

Eq. (3.1) allows us to calculate the curvature of implicit planar curves, but it is difficult to see
this formula can be extended either to implicit space curves or to implicit surfaces. Implicit space
are defined by the intersection of two implicit surfaces:{F1(x, y, z) = 0} ∩ {F2(x, y, z) = 0}. Thus for
implicit space curves we have two hessians to consider:H(F1) andH(F2). How then are we to replace th
hessianH(F) in Eq. (3.1)? For implicit surfacesF(x, y, z) = 0, we have analogues of the gradient a
the hessian, but no analogue of the tangent vector Tan(F ), so once again it is unclear how to general
Eq. (3.1). To overcome these shortcomings, we shall seek alternative ways to package Eq. (3.
is, we shall seek equivalent expressions for the curvature for implicit planar curves that can be e
either to implicit space curves or to implicit surfaces.

To find new expressions for the curvature, we can proceed in the following fashion. In Table 1, w
sented four formulas for the curvature in terms of the unit tangent, the unit normal, and their deri
with respect to arclength. Using these formulas and proceeding as in Proposition 3.1 applying th
rule and the quotient rule, we arrive at the following results.

Alternative curvature formulas

Curvature formula—k = −dN
ds

• T

k = −Tan(F ) ∗ H(F) ∗ Tan(F )T

|∇F |3 = −(−Fy Fx) ∗ ( Fxx Fxy

Fyx Fyy

)∗(−Fy

Fx

)
(F 2 + F 2)3/2

. (3.1)

x y
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Curvature formula—k = dT
ds

• N

k = Tan(F ) ∗ ∇(Tan(F )) ∗ ∇F T

|∇F |3 = −(−Fy Fx) ∗ (−Fxy Fxx

−Fyy Fxy

)∗(
Fx
Fy

)
(F 2

x + F 2
y )3/2

. (3.2)

Curvature formula—k = |dN
ds

× N | (τ = 0)

k = |(Tan(F ) ∗ H(F)) × ∇F |
|∇F |3 =

∣∣((−Fy Fx) ∗ ( Fxx Fxy

Fyx Fyy

)) × (Fx Fy)
∣∣

(F 2
x + F 2

y )3/2
. (3.3)

Curvature formula—k = |dT
ds

× T |

k = |(Tan(F ) ∗ ∇(Tan(F ))) × Tan(F )|
|Tan(F )|3 =

∣∣((−Fy Fx) ∗ (−Fxy Fxx

−Fyy Fxy

)) × (−Fy Fx)
∣∣

(F 2
x + F 2

y )3/2
. (3.4)

Note that in the plane, the cross products that appear in Eqs. (3.3) and (3.4) are really sc
the determinants of the two factors. Thus if we want the signed curvature, we should comput
determinants and ignore the absolute value.

We can easily check the validity of Eqs. (3.2)–(3.4) by expanding the right hand sides and o
ing that these expressions are each the same as the right hand side of Eq. (3.1). Eq. (3.4) is pa
interesting because the right hand side depends only on Tan(F ). For implicit space curves, the ta
gent direction is known, since if the space curve is given by the intersection of two implicit su
{F1(x, y, z) = 0} ∩ {F2(x, y, z) = 0}, then the tangent is parallel to∇F1 × ∇F2. Thus we expect tha
Eq. (3.4) for the curvature of implicit planar curves will readily extend to implicit space curves; we
have more to say about this extension in Section 5.

What about curvature formulas for implicit surfaces? For implicit surfaces we want to conside
the mean and the Gaussian curvature. Therefore we need two different expressions for the c
of an implicit planar curve that readily extend, but in different ways, to implicit surfaces. None o
expressions in Eqs. (3.1)–(3.4) will do, since these expressions all depend on Tan(F ), and for implicit
surfaces there is no analogue of Tan(F ). For implicit surfaces, we need formulas that depend only on
gradient and the hessian. Therefore, we must take another approach.

One device for developing new expressions for the curvature is to exploit the adjoint operat
Table 2).

Adopting the notation in Table 2, it is easy to verify the following identities:

Table 2
The adjoint operator∗ for constants, 2-dimensional row and column vectors,
and 2× 2 matrices

Constants k k∗ = k

Row vectors r = (r1, r2) r∗ = (−r2, r1)T

Column vectors c = (c1, c2)T c∗ = −(−c2, c1)

Matrices M =
(

m11 m12
m21 m22

)
M∗ =

(
m22 −m21

−m12 m11

)
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c∗ ∗ r∗ = r ∗ c,

(M ∗ c)∗ = c∗ ∗ M∗,
(r ∗ M)∗ = M∗ ∗ r∗.

Therefore for any 2-dimensional row and column vectorsr, c and any 2× 2 matrixM

r ∗ M ∗ c = (r ∗ M ∗ c)∗ = c∗ ∗ M∗ ∗ r∗.

The adjointH ∗(F ) of the hessian is given by

H ∗(F ) =
( ∂2F

∂y2 − ∂2F
∂y∂x

− ∂2F
∂x∂y

∂2F

∂x2

)
=

(
Fyy −Fyx

−Fxy Fxx

)
= −∇(

Tan(F )
)
.

Moreover, by construction, the adjoint of the gradient is the tangent and the adjoint of the tangen
negative of the gradient—that is,

∇∗(F ) = Tan(F )T,

Tan∗(F ) = −∇(F )T.

Therefore, applying the adjoint operator to the curvature formula

k = −Tan(F ) ∗ H(F) ∗ Tan(F )T

|∇F |3
generates the following adjoint hessian formula for the curvature of an implicit planar curve:

Adjoint hessian formula

k = −∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |3 = −(Fx Fy) ∗ ( Fyy −Fyx

−Fxy Fxx

) ∗ (
Fx
Fy

)
(F 2

x + F 2
y )3/2

. (3.5)

Again it is easy to verify directly that the right hand side of Eq. (3.5) agrees with the right han
of Eq. (3.1), so Eq. (3.5) is indeed yet another valid expression for the curvature of an implicit
curve. Moreover, this expression in terms of the gradient and the adjoint of the hessian readily ex
implicit surfaces, so we can expect this adjoint hessian formula to represent the curvature of an
surface. We shall return to this topic again in Section 4.

The adjoint hessian formula may extend to one of the two curvatures—mean or Gaussian—
implicit surface, but we need still another equivalent curvature expression if we hope to repres
other curvature for implicit surfaces. Also we might like to work directly with the hessian rather
with the adjoint of the hessian. Fortunately there is another equivalent formulation for the curva
an implicit planar curve that uses only the gradient and the hessian.

To eliminateH ∗(F ) from Eq. (3.5), simply observe that

H(F) + H ∗(F ) = Trace
(
H(F)

)
I,

whereI is the identity matrix. Now substituting forH ∗(F ) in Eq. (3.5) leads to the following expressio
for the curvature:
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Hessian formula

k = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H(F ))

|∇F |3 . (3.6)

We close this section with two additional alternative expressions for the curvature of an implicit
curve that will show up again when we study curvature for implicit surfaces. As usual the validity of
formulas can be verified by direct computation of the right hand sides.

Determinant computation

k = Det
(

H(F)
∇F

∇F T

0

)
|∇F |3 . (3.7)

Divergence formula

k = −∇ • N(F) = −∇ •
( ∇F

|∇F |
)

. (3.8)

The divergence of the unit normal is often taken as the definition of the curvature for an im
planar curve. We have not used this definition here because we wanted to develop curvature f
for implicit curves directly from known curvature formulas for parametric curves. Also, althoug
theoretical interest, this divergence formula is less practical as a computational tool than many
other expressions for the curvature developed in this section.

4. Curvature formulas for implicit surfaces

We expect curvature formulas for implicit surfacesF(x, y, z) = 0, just like curvature formulas fo
implicit curvesF(x, y) = 0, to depend only on the gradient∇F , the hessianH(F), and the adjoint o
the hessianH ∗(F ). As with curves, we shall adopt the following notation for surfaces:

∇F = ( ∂F
∂x

∂F
∂y

∂F
∂z

) = (Fx Fy Fz),

H(F ) =



∂2F

∂x2
∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F

∂y2
∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F

∂z2


 =

(
Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

)
= ∇(∇F),

H ∗(F ) =
(Cofactor(Fxx) Cofactor(Fxy) Cofactor(Fxz)

Cofactor(Fyx) Cofactor(Fyy) Cofactor(Fyz)

Cofactor(Fzx) Cofactor(Fzy) Cofactor(Fzz)

)

=
(

FyyFzz − FyzFzy FyzFzx − FyxFzz FyxFzy − FyyFzx

FxzFzy − FxyFzz FxxFzz − FxzFzx FxyFzx − FxxFzy

)
.

FxyFyz − FxzFyy FyxFxz − FxxFyz FxxFyy − FxyFyx
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Here again∇ applied to a row vector means take the gradient of each component and write thes
ponent gradients in a matrix as consecutive column vectors. As with curves, the gradient∇F is parallel
to the normal of the surfaceF(x, y, z) = 0. Therefore, the unit normal is given by

N(F) = ∇F

|∇F | = (Fx Fy Fz)√
F 2

x + F 2
y + F 2

z

.

With this notation in hand, we are now ready to develop curvature formulas for implicit surfaces.
The following curvature formulas for implicit surfaces appear in (Spivak, 1975, vol. 3, p. 204) (S

gives only the expressions on the far right); see also (Knoblauch, 1913, pp. 89–94):

Gaussian curvature

KG = ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |4 = −
∣∣H(F) ∇F T

∇F 0

∣∣
|∇F |4 . (4.1)

Mean curvature

KM = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H)

2|∇F |3 = −coeff(λ) in
∣∣H(F)−λI ∇F T

∇F 0

∣∣
2|∇F |3 . (4.2)

Notice that Eq. (4.1) for Gaussian curvature is an extension to surfaces of the adjoint hessian
(Eq. (3.5)) for the curvature of implicit planar curves. The normalizing factor|∇F |4 that appears in th
denominator insures thatcF (x, y, z) = 0 has the same curvature asF(x, y, z) = 0. In addition, Eq. (4.2)
for the mean curvature is an extension to implicit surfaces of the hessian formula (Eq. (3.6)) for t
vature of implicit planar curves. The factor of two in the denominator occurs because the mean cu
is the average of the two principal curvatures.

The principal curvaturesk1, k2 can be computed from the mean and Gaussian curvaturesKM , KG by
the standard formula

k1, k2 = KM ±
√

K2
M − KG. (4.3)

One can also verify that

k1, k2 = − roots
{∣∣H(F)−λI ∇F T

∇F 0

∣∣}
|∇F | (4.4)

by using Eqs. (4.1) and (4.2) to demonstrate that Eq. (4.4) is equivalent to Eq. (4.3).
We shall now derive Eqs. (4.1) and (4.2) for the Gaussian and mean curvatures of implicit s

from the corresponding curvature formulas for parametric surfaces.

Theorem 4.1.

KG = ∇F ∗ H ∗(F ) ∗ ∇F

|∇F |4 .
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Proof. We shall only consider regular points on the implicit surface—points where∇F �= 0—since the
Gaussian curvature in not defined at points on the surface that are not regular. By the implicit fu
theorem, if∇F �= 0, then the surface has a local parametrizationP(s, t). Let

N = N(s, t) = Ps × Pt

|Ps × Pt | ;
thenN is the unit normal to the surface. Therefore by Corollary 2.2

KG = (Ps × Pt) • (Ns × Nt)

|Ps × Pt |2 .

We shall now show how to transform the right hand side of this equation into the right hand s
Eq. (4.1). Since the unit normal to the surface is also given by the formula

N = ∇F

|∇F | ,
it follows by the chain rule that ifu = s, t , then

Nu = Pu ∗ H(F)

|∇F | + term parallel to∇F.

Hence

Ns × Nt = (Ps ∗ H(F)) × (Ps ∗ H(F))

|∇F |2 + terms perpendicular to∇F.

But for all 3-dimensional vectorsa, b and all 3× 3 matricesM ,

(a ∗ M) × (b ∗ M) = (a × b) ∗ M∗,

whereM∗ denotes the adjoint ofM . Therefore

Ns × Nt = (Ps × Pt) ∗ H ∗(F )

|∇F |2 + terms perpendicular to∇F.

Now since∇F andPs × Pt are both parallel to the surface normal, there is a constantλ such that

Ps × Pt = λ∇F.

Thus,

(Ps × Pt) • (Ns × Nt) = λ2∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |2 ,

|Ps × Pt |2 = λ2|∇F |2.
Therefore

KG = (Ps × Pt) • (Ns × Nt)

|Ps × Pt |2 = ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |4 . �
Corollary 4.2.

KG = −
∣∣H(F) ∇F T

∇F 0

∣∣
|∇F |4 .
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Proof. This corollary follows by expanding the right-hand side and verifying that the result give
same expression as the expansion of the right-hand side in the curvature formula in Theorem 4.1�
Theorem 4.3.

KM = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H)

2|∇F |3 .

Proof. Again we shall only consider regular points on the implicit surface—points where∇F �= 0—
since the mean curvature in not defined at points on the surface that are not regular. By the
function theorem, if∇F �= 0, then the surface has a local parametrizationP(s, t). Let

N = N(s, t) = Ps × Pt

|Ps × Pt | ;
thenN is the unit normal to the surface. Therefore by Corollary 2.4

KM = (Ps × Pt) • ((Pt × Ns) − (Ps × Nt))

2|Ps × Pt |2 .

We shall now show how to transform the right-hand side of this equation into the right-hand s
Eq. (4.2). Since the unit normal to the surface is also given by the formula

N = ∇F

|∇F | ,
it follows by the chain rule exactly as in the proof of Theorem 4.1 that ifu = s, t , then

Nu = Pu ∗ H(F)

|∇F | + term parallel to∇F.

Hence

Pt × Ns = Pt × (Ps ∗ H(F))

|∇F | + terms perpendicular to∇F,

Ps × Nt = Ps × (Pt ∗ H(F))

|∇F | + terms perpendicular to∇F,

so

Pt × Ns − Ps × Nt = Pt × (Ps ∗ H(F)) − Ps × (Pt ∗ H(F))

|∇F | + terms perpendicular to∇F.

But for all 3-dimensional vectorsa, b and all symmetric 3× 3 matricesM ,

b × (a ∗ M) − a × (b ∗ M) = (a × b) ∗ M − Trace(M)(a × b).

(Since this identity is not well known, and is perhaps even new, we verified this identity inMathematica
using symbolic computation.) Therefore

Pt × Ns − Ps × Nt = (Ps × Pt) ∗ H(F) − Trace(H(F ))(Ps × Pt)

|∇F | + terms perpendicular to∇F.

Now since∇F andPs × Pt are both parallel to the surface normal, there is a constantλ such that

Ps × Pt = λ∇F.
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Thus

(Ps × Pt) • (
(Pt × Ns) − (Ps × Nt)

) = λ2∇F ∗ H(F) ∗ ∇F T − λ2 Trace(H(F ))|∇F |2
|∇F | ,

|Ps × Pt |2 = λ2|∇F |2.
Therefore

KM = (Ps × Pt) • ((Ps × Nt) − (Pt × Ns))

2|Ps × Pt |2 = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H)

2|∇F |3 . �
Corollary 4.4.

KM = −coeff(λ) in
∣∣H(F)−λI ∇F T

∇F 0

∣∣
2|∇F |3 .

Proof. This corollary follows by expanding the right hand side and verifying that the result give
same expression as the expansion of the right hand side in the curvature formula in Theorem 4.3�
Corollary 4.5 (Divergence formula for mean curvature).

KM = −∇ • N(F) = −∇ •
( ∇F

|∇F |
)

.

Proof. Again this corollary follows by expanding the right hand side and verifying that the result
the same expression as the expansion of the right hand side in the curvature formula in Theorem�

The divergence of the unit normal is often taken as the definition of the mean curvature for im
surfaces. This divergence formula mimics the corresponding divergence formula for the curva
an implicit curve. We have not used this definition here because, just as in the curve case, we
to develop the mean curvature formula for implicit surfaces directly from the well-known formu
the mean curvature of parametric surfaces. Moreover, although of theoretical interest, this div
formula is less practical as a computational tool than Eq. (4.2).

Before computing some examples, let us pause here for a moment and comment upon the in
of these curvature formulas. The surfaceF(x, y, z) = 0 is identical to the surfacecF (x, y, z) = 0 for any
constantc �= 0. Therefore, naively, we would expect that the curvature ofF(x, y, z) = 0 should be the
same as the curvature ofcF (x, y, z) = 0. For implicit curves, we saw that this invariance does not q
hold if c < 0. What about curvature invariance for implicit surfaces?

For Gaussian curvature, this invariance does indeed hold. Ifc �= 0, then replacingF by cF on the
right hand side of Eq. (4.1) introduces a factor ofc4 in both the numerator and the denominator, so
Gaussian curvatureKG is unchanged.

The mean curvature, however, behaves more like the curvature of implicit planar curves. Ifc > 0, then
replacingF by cF on the right hand side of Eq. (4.2) introduces a factor ofc3 in both the numerato
and the denominator, so the mean curvatureKM is unchanged. However, replacingF by −F on the
right hand side of Eq. (4.2) changes the sign of the numerator, but not the sign of the denomina
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changing the sign ofKM . Of course, replacingF by −F also changes the direction of the unit norm
N(F) = ∇F/|∇F |. Therefore the mean curvature vector,

�KM = KMN(F) = KM∇F/|∇F |
is invariant, but the sign of the mean curvatureKM depends on the choice of the direction of the unit n
mal, which, in turn, depends on the sign ofF . This sign dependence is exactly the same sign depend
we observed in the curvature formula for implicit planar curves. In this way the mean curvature
than the Gaussian curvature, resembles the curvature of implicit planar curves. The divergence
is yet another way that the mean curvature more closely mimics the behavior of the curvature of
planar curves.

Example 4.1 (Spheres). We can check our curvature formulas on the spheres

F(x, y, z) ≡ x2 + y2 + z2 − R2 = 0.

To compute the mean and Gaussian curvatures, we need

∇F = (Fx Fy Fz) = (2x 2y 2z),

H(F ) =
(

Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

)
=

(2 0 0
0 2 0
0 0 2

)
,

H ∗(F ) =
(Cofactor(Fxx) Cofactor(Fxy) Cofactor(Fxz)

Cofactor(Fyx) Cofactor(Fyy) Cofactor(Fyz)

Cofactor(Fzx) Cofactor(Fzy) Cofactor(Fzz)

)
=

(4 0 0
0 4 0
0 0 4

)
,

Trace
(
H(F)

) = 6.

Gaussian curvature:

KG = ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |4 ,

KG =
(2x 2y 2z)

( 4 0 0
0 4 0
0 0 4

)( 2x
2y
2z

)
(4x2 + 4y2 + 4z2)2

= 16(x2 + y2 + z2)

16(x2 + y2 + z2)2
= 1

R2
.

Mean curvature:

KM = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H)

2|∇F |3 ,

KM =
(2x 2y 2z)

( 2 0 0
0 2 0
0 0 2

)( 2x
2y
2z

) − 6(4x2 + 4y2 + 4z2)

2(4x2 + 4y2 + 4z2)3/2
= 8R2 − 24R2

2(8R3)
= − 1

R
.

Notice that the mean curvature here is negative, but notice too that∇F = (2x,2y,2z) is the outward
pointing normal. Thus, as one would expect, the mean curvature vector�KM = KM∇F/|∇F | points into
the sphere and has magnitude|KM | = 1/R.
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Example 4.2 (Explicit functions). Surfaces defined by explicit functions are special cases both of
metric and of implicit surfaces. Therefore, we can check our curvature formulas on the explicitly d
surfaces:

F(x, y, z) ≡ z − f (x, y, z) = 0.

To compute the mean and Gaussian curvatures, we first calculate

∇F = (fx fy 1),

H(F ) =
(

fxx fxy 0
fyx fyy 0
0 0 0

)
,

H ∗(F ) =
(0 0 0

0 0 0
0 0 Det(H(F ))

)
,

Trace
(
H(F)

) = Trace
(
H(f )

)
.

Gaussian curvature:

KG = ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |4 = Det(H(f ))

(|∇f |2 + 1)2
.

Mean curvature:

KM = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H)

2|∇F |3 ,

KM = ∇f ∗ H(f ) ∗ ∇f T − (|∇f |2 + 1)Trace(H(f ))

2(|∇f |2 + 1)3/2
.

The reader can easily verify that we get exactly these same expressions for the mean and G
curvatures using the classical formulas presented in Section 2.2 for the mean and Gaussian cur
a parametric surface.

Our formulas for Gaussian and mean curvature readily extend to implicit hypersurfaces in
dimensions. IfF(x1, . . . , xn+1) = 0 represents an implicitn-dimensional hypersurface lying in an(n+1)-
dimensional space, then we have the following general formulas for the Gaussian and mean cu
(Dombrowski, 1968, pp. 167, 168; Gromoll et al., 1975, pp. 1091–1111):

(KG)n(F ) = (−1)n ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |n+2
,

(KM)n(F ) = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H(F ))

n|∇F |3 .

Notice that the only essential differences between mean and Gaussian curvature formulas for su
3-dimensions and mean and Gaussian curvature formulas for hypersurfaces in(n + 1)-dimensions are
the normalizations in the denominators.
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Example 4.3 (Hyperspheres). We can check these curvature formulas on the hyperspheresSn in Rn+1

Sn: x2
1 + · · · + x2

n+1 − R2 = 0.

Here we easily compute

H(Sn) = Diag(2),

H ∗(Sn) = Diag(2n),

Trace
(
H(Sn)

) = 2(n + 1).

Therefore

(KG)n(S
n) = (−1)n 2n+2R2

(2R)n+2
= (−1)n

Rn
,

(KM)n(S
n) = 8R2 − (8n + 8)R2

n(2R)3
= − 1

R
.

5. Curvature and torsion formulas for implicit space curves and beyond

Implicit space curves are defined by the intersection of two implicit surfaces:{
F(x, y, z) = 0

} ∩ {
G(x,y, z) = 0

}
.

Since the gradients∇F and∇G are normal to their respective surfaces, their cross product is tang
the intersection curve. As with planar curves, we shall adopt the following notation for space curv

Curve tangent:

Tan(F,G) = ∇F × ∇G. (5.1)

Unit tangent:

T (F,G) = ∇F × ∇G

|∇F × ∇G| . (5.2)

5.1. Curvature for implicit space curves

For implicit planar curves, we showed in Section 3 (Eq. (3.4)) that the curvature is given by

k = |(Tan(F ) ∗ ∇(Tan(F ))) × Tan(F )|
|Tan(F )|3 . (3.4)

Since we derived this curvature formula from the Frenet equations, this same curvature formula
valid for space curves. Substituting Eq. (5.1) for Tan(F ), we arrive at the following curvature formu
for implicit space curves:

k = |((∇F × ∇G) ∗ ∇(∇F × ∇G)) × (∇F × ∇G)|
|∇F × ∇G|3 . (5.3)
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Example 5.1 (Spheres∩ Cylinders). We can check this curvature formula on circles generated by sp
intersecting cylinders tangentially from the inside. Consider the following surfaces:

Spheres Cylinders
F(x, y, z) ≡ x2 + y2 + z2 − R2 = 0, G(x, y, z) ≡ x2 + y2 − R2 = 0,

∇F = (2x 2y 2z), ∇G = (2x 2y 0).

The tangents to the intersection curve are given by

Tan(F,G) = ∇F × ∇G = (−4yz 4xz 0).

Hence

|∇F × ∇G|3 = (
16z2(x2 + y2)

)3/2 = 64z3R3,

∇(∇F × ∇G) =
( 0 4z 0

−4z 0 0
−4y 4x 0

)
,

(∇F × ∇G) ∗ ∇(∇F × ∇G) = (−4yz 4xz 0) ∗
( 0 4z 0

−4z 0 0
−4y 4x 0

)
= (−16xz2 −16yz2 0),

∣∣((∇F × ∇G) ∗ ∇(∇F × ∇G)
) × (∇F × ∇G)

∣∣ = ∣∣(−16xz2 −16yz2 0) × (−4yz 4xz 0)
∣∣

= ∣∣(0 0 −64z3(x2 + y2)
)∣∣ = 64z3R2.

Therefore, as expected,

k = |((∇F × ∇G) ∗ ∇(∇F × ∇G)) × (∇F × ∇G)|
|∇F × ∇G|3 = 64z3R2

64z3R3
= 1

R
.

We would like to extend our curvature formula—Eq. (5.3)—for implicit space curves to a curv
formula for implicit curves in(n + 1)-dimensions—that is, to curves generated by the intersectionn
implicit equations:{

F1(x1, . . . , xn+1) = 0
} ∩ · · · ∩ {

Fn(x1, . . . , xn+1)
}
.

However, in order to generalize Eq. (5.3), we first need to generalize the cross product from 3-dim
to (n + 1)-dimensions. Actually there are two ways to extend the cross product from 3-dimensi
(n + 1)-dimensions and we shall require both techniques.

The first cross product in Eq. (5.3) is used to compute the tangent to the intersection curve. Re
the gradients

∇F1 = (F1x1, . . . ,F1xn+1), . . . , ∇Fn = (Fnx1, . . . ,Fnxn+1)

are normal to their respective hypersurfaces. Therefore the tangent to the intersection curve is
perpendicular to each of these gradient vectors.
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The extension of the cross product to(n + 1)-dimensions that generates a vector perpendicular
collection ofn vectors is given by a determinant. Lete = (e1, . . . , en+1) be the canonical basis forRn+1,
whereei is the vector that has a one in theith position and a zero everywhere else. Then

Tan(F1, . . . ,Fn) = Det




e

∇F1
...

∇Fn


 = Det




e1 . . . en+1

F1x1 . . . F1xn+1

...
...

...

Fnx1 . . . Fnxn+1


 .

This expression for Tan(F1, . . . ,Fn) is perpendicular to∇F1, . . . ,∇Fn because taking the dot product
Tan(F1, . . . , ,Fn) with ∇Fi is equivalent to substituting∇Fi for e, and the determinant of a matrix wi
two identical rows is identically zero.

The other cross product in Eq. (5.3)—corresponding to the cross product in Eq. (3.1)—is th
product of two, rather thann, vectors. To generalize this cross product from vectors in 3-dimensio
vectors in(n+ 1)-dimensions, we introduce the wedge product (Northcott, 1984). The wedge prod
two vectors in an(n + 1)-dimensional space spanned bye1, . . . , en+1 is a vector in a space of dimensio(

n+1
2

)
spanned by a new collection of vectors denoted by{ei ∧ ej }, wherei < j . Let u = u1e1 + · · · +

un+1en+1 andv = v1e1 + · · · + vn+1en+1. Then we define

u ∧ v = (u1e1 + · · · + un+1en+1) ∧ (v1e1 + · · · + vn+1en+1) =
∑
i<j

∣∣∣∣ui uj

vi vj

∣∣∣∣ (ei ∧ ej ).

Notice that the wedge product, just like the cross product, is anti-commutative and distributes t
addition.

Actually to extend Eq. (5.3), we need only compute the magnitude of the wedge product. The
tude of the wedge product is given by the formula

|u ∧ v|2 = ∣∣(u1e1 + · · · + un+1en+1) ∧ (v1e1 + · · · + vn+1en+1)
∣∣2 =

∑
i<j

∣∣∣∣ui uj

vi vj

∣∣∣∣
2

.

Notice that∑
i<j

∣∣∣∣ui uj

vi vj

∣∣∣∣
2

=
(∑

i

u2
i

)(∑
j

v2
j

)
−

(∑
k

ukvk

)2

.

Therefore, much like the cross product, wedge product satisfies the identity

|u ∧ v|2 = |u|2|v|2 − (u • v)2.

Using this identity, we can avoid altogether the computation ofu ∧ v. Thus in the curvature formula w
present below, the wedge product is used only as a device to compress the notation.

The curvature formula for a curve defined by the intersection ofn implicit hypersurfacesF1(x1, . . . ,

xn+1) = 0, . . . ,Fn(x1, . . . , xn+1) = 0 now becomes

k = |(Tan(F1, . . . ,Fn) ∗ ∇(Tan(F1, . . . ,Fn))) ∧ Tan(F1, . . . ,Fn)|
|Tan(F1, . . . ,Fn)|3 , (5.4)

where∇(Tan(F1, . . . ,Fn)) is interpreted in the usual fashion to mean that we take the gradient of
component of Tan(F1, . . . ,Fn) and write these gradients in a matrix as consecutive column vectors
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Example 5.2 (3-sphere∩ 2-sphere∩ cylinder). We can check this curvature formula on circles gener
by 3-spheres intersecting 2-spheres intersecting cylinders tangentially. Consider the following su

3-Spheres:

F1(x, y, z,w) ≡ x2 + y2 + z2 + w2 − R2 = 0,

∇F1 = (2x 2y 2z 2w).

2-Spheres:

F2(x, y, z,w) ≡ x2 + y2 + z2 − R2 = 0,

∇F2 = (2x 2y 2z 0).

Cylinders:

F3(x, y, z,w) ≡ x2 + y2 − R2 = 0,

∇F3 = (2x 2y 0 0).

The tangents to the intersection curve are given by

Tan(F1,F2,F3) = Det




e

∇F1

∇F2

∇F3


 =




e1 e2 e3 e4

2x 2y 2z 2w

2x 2y 2z 0
2x 2y 0 0


 = −(8yzw)e1 + (8xzw)e2.

Hence∣∣Tan(F1,F2,F3)
∣∣3 = 512z3w3R3,

∇(
Tan(F1,F2,F3)

) =



0 8zw 0 0
−8zw 0 0 0
−8yw 8xw 0 0
−8yz 8xz 0 0


 ,

Tan(F1,F2,F3) ∗ ∇(
Tan(F1,F2,F3)

) = (−8yzw 8xzw 0 0) ∗



0 8zw 0 0
−8zw 0 0 0
−8yw 8xw 0 0
−8yz 8xz 0 0




= −(64z2w2x)e1 − (64z2w2y)e2,(
Tan(F1,F2,F3) ∗ ∇(

Tan(F1,F2,F3)
)) ∧ Tan(F1,F2,F3)

= (−(64z2w2x)e1 − (64z2w2y)e2
) ∧ (−(8yzw)e1 + (8xzw)e2

)
= −(512z3w3R2)(e1 ∧ e2).

Therefore, as expected,

k = |(Tan(F1,F2,F3) ∗ ∇(Tan(F1,F2,F3))) ∧ Tan(F1,F2,F3)|
|Tan(F1,F2,F3)|3 = 512z3w3R2

512z3w3R3
= 1

R
.
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5.2. Torsion for implicit space curves

To develop a closed form expression for the torsion of an implicit space curve, we begin, as usu
a classical formula for the torsion of a parametric curve. In Section 2.1, Table 1 provides four fo
for the torsion of a space curve in terms of the unit tangent, the unit normal, and their derivativ
implicit space curves, however, we know only the unit tangent (Eq. (5.2)); therefore only the last fo
in Table 1 is readily applied. Thus starting with

τ = Det
(
T dT

ds
d2T

ds2

)
k2

,

T (F,G) = ∇F × ∇G

|∇F × ∇G| ,
we shall now derive a closed expression for the torsion of an implicit space curve.

Theorem 5.1 (Torsion of an implicit space curve).

τ = Det(T ∗ T ∗∗ T ∗∗∗)
|T ∗ × T ∗∗|2 , (5.5)

where

T ∗ = ∇F × ∇G,

T ∗∗ = T ∗ ∗ ∇T ∗ = (∇F × ∇G) ∗ ∇(∇F × ∇G),

T ∗∗∗ = T ∗ ∗ ∇(∇T ∗) ∗ T ∗T + T ∗ ∗ ∇T ∗ ∗ ∇T ∗

= (∇F × ∇G) ∗ ∇(∇(∇F × ∇G)
) ∗ (∇F × ∇G)T

+ (∇F × ∇G) ∗ ∇(∇F × ∇G) ∗ ∇(∇F × ∇G).

Here∇ applied to a matrix such as∇T ∗ means apply∇ to each column vector of the matrix to genera
a list of three consecutive matrices.

Proof. We start with the formula

τ = Det
(
T dT

ds
d2T

ds2

)
k2

.

To compute the determinant in the numerator, observe that

T = T ∗

|T ∗| .
Moreover, by the chain rule,

dT ∗

ds
= T ∗ ∇T ∗ = T ∗ ∗ ∇T ∗

|T ∗| .

Therefore, by the quotient rule,

dT = T ∗ ∗ ∇T ∗
∗ 2

−
(d|T ∗|

ds

)
T ∗

∗ 2
= T ∗∗

∗ 2
+ term parallel toT ∗.
ds |T | |T | |T |
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Differentiating one more time by the chain rule and the quotient rule, we find that

d2T

ds2
= T ∗ ∗ ∇(∇T ∗) ∗ T ∗T

|T ∗|3 + T ∗ ∗ ∇T ∗ ∗ ∇T ∗

|T ∗|3
+ terms parallel to

T ∗ ∗ ∇T ∗

|T ∗| + terms parallel toT ∗

= T ∗∗∗

|T ∗|3 + terms parallel to
T ∗ ∗ ∇T ∗

|T ∗| + terms parallel toT ∗.

Therefore

τ = Det
(
T dT

ds
d2T

ds2

)
k2

= Det(T ∗ T ∗∗ T ∗∗)
k2|T ∗|6 .

But by Eq. (5.3),

k2 = |((∇F × ∇G) ∗ ∇(∇F × ∇G)) × (∇F × ∇G)|2
|∇F × ∇G|6 = |T ∗∗ × T ∗|2

|T ∗|6 .

Hence

τ = Det(T ∗ T ∗∗ T ∗∗∗)
|T ∗ × T ∗∗|2 . �

Example 5.3 (Explicit functions of one variable). Space curves defined by the intersection of exp
functions of a single variable are special cases of both parametric and implicit curves. Therefore,
check our torsion formula on the intersection of two explicitly defined surfaces:

Equations Gradients
F(x, y, z) ≡ y − f (x) = 0, ∇F = (f ′ 1 0),
G(x, y, z) ≡ z − g(x) = 0, ∇G = (g′ 0 1).

Now we have the following matrices:

T ∗ = ∇F × ∇G = (1 −f ′ −g′),

∇T ∗ =
(0 −f ′′ −g′′

0 0 0
0 0 0

)
,

∇(∇T ∗) =
((0 0 0

0 0 0
0 0 0

)(−f ′′′ 0 0
0 0 0
0 0 0

)(−g′′′ 0 0
0 0 0
0 0 0

))
,

∇T ∗ ∗ ∇T ∗ = 0.

To compute the numerator of the torsion, observe that

T ∗∗ = T ∗ ∗ ∇T ∗ = (1 −f ′ −g′) ∗
(0 −f ′′ −g′′

0 0 0
0 0 0

)
= (0 −f ′′ g′′),

T ∗∗∗ = T ∗ ∗ ∇(∇T ∗) ∗ T ∗T
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sing the

s and
= (1 −f ′ −g′) ∗
((0 0 0

0 0 0
0 0 0

)(−f ′′′ 0 0
0 0 0
0 0 0

)(−g′′′ 0 0
0 0 0
0 0 0

))
∗

( 1
−f ′
−g′

)

= (0 −f ′′′ −g′′′).

Hence

Det(T ∗ T ∗∗ T ∗∗∗) = Det

( 1 0 0
−f ′ −f ′′ −f ′′′
−g′ −g′′ −g′′′

)
= f ′′g′′′ − f ′′′g′′.

Similarly, for the denominator we have

|T ∗ × T ∗∗|2 = ∣∣(1 −f ′ −g′) × (0 −f ′′ −g′′)
∣∣2 = |f ′′g′ − f ′g′′ g′′ −f ′′|2

= (f ′′g′ − f ′g′′)2 + (g′′)2 + (f ′′)2.

Therefore

τ = Det(T ∗ T ∗∗ T ∗∗∗)
|T ∗ × T ∗∗| = f ′′g′′′ − f ′′′g′′

(f ′′g′ − f ′g′′)2 + (g′′)2 + (f ′′)2
.

The reader can easily verify that in this case we get exactly the same expression for the torsion u
classical equation given in Section 2.1 for the torsion of a parametric curve:

τ = Det(P ′ P ′′ P ′′′)
|P ′ × P ′′|2 .

6. Summary

Here we collect in one location for easy reference all of our curvature formulas for implicit curve
surfaces.

6.1. Curvature formulas for implicit planar curves

Notation
Implicit curve:F(x, y) = 0.
Normal:∇F = (Fx,Fy).
Tangent: Tan(F ) = k × ∇F = (−Fy,Fx).
Hessian:

H(F) =
(

Fxx Fxy

Fyx Fyy

)
= ∇(∇F).

Adjoint of the hessian:

H ∗(F ) =
(

Fyy −Fyx

−Fxy Fxx

)
= −∇(

Tan(F )
)
.
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Curvature formulas

k = −Tan(F ) ∗ H(F) ∗ Tan(F )T

|∇F |3 , k = Tan(F ) ∗ ∇(Tan(F )) ∗ ∇F T

|∇F |3 ,

k = Det((Tan(F ) ∗ H(F))T ∇F T)

|∇F |3 , k = Det((Tan(F ) ∗ ∇(Tan(F )))T (Tan(F ))T)

|Tan(F )|3 ,

k = −∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |3 , k = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H(F ))

|∇F |3 ,

k =
∣∣H(F) ∇F

∇F 0

∣∣
|∇F |3 , k = −∇ •

( ∇F

|∇F |
)

.

6.2. Curvature formulas in co-dimension 1

Notation
Implicit hypersurface:F(x1, . . . , xn+1) = 0.
Gradient:∇F = (Fx1, . . . ,Fxn+1).
Hessian:

H(F) =

 Fx1x1 . . . Fx1xn+1

...
. . .

...

Fxn+1x1 . . . Fxn+1xn+1


 = ∇(∇F).

Adjoint of the hessian:

H ∗(F ) =

 Cofactor(Fx1x1) . . . Cofactor(Fx1xn+1)

...
. . .

...

Cofactor(Fxn+1x1) . . . Cofactor(Fxn+1xn+1)


 .

Gaussian curvature

k = −∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |3 ,

KG = ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |4 ,

(KG)n(F ) = (−1)n ∇F ∗ H ∗(F ) ∗ ∇F T

|∇F |n+2
,

(KG)n = (−1)n−1

∣∣H(F) ∇F T

∇F 0

∣∣
|∇F |n+2

.

Mean curvature

k = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H(F ))

|∇F |3 ,

KM = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H(F ))

3
,

2|∇F |
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(KM)n(F ) = ∇F ∗ H(F) ∗ ∇F T − |∇F |2 Trace(H(F ))

n|∇F |3 ,

(KM)n = (−1)n−1 coeff(λn−1) in
∣∣H(F)−λI ∇F T

∇F 0

∣∣
n|∇F |3 ,

(KM)n = −∇ •
( ∇F

|∇F |
)

.

6.3. Curvature and torsion formulas for implicit space curves

Notation
Implicit space curve:{F(x, y, z) = 0} ∩ {G(x,y, z) = 0}.
Curve tangent:T ∗ = ∇F × ∇G.
Additional notation:

• T ∗∗ = T ∗ ∗ ∇T ∗ = (∇F × ∇G) ∗ ∇(∇F × ∇G)

• T ∗∗∗ = T ∗ ∗ ∇(∇T ∗) ∗ T ∗T + T ∗ ∗ ∇T ∗ ∗ ∇T ∗
= (∇F × ∇G) ∗ ∇(∇(∇F × ∇G)) ∗ (∇F × ∇G)T

+ (∇F × ∇G) ∗ ∇(∇F × ∇G) ∗ ∇(∇F × ∇G).

Curvature and torsion formulas
Parametric curves:

k = |P ′ × P ′′|
|P ′|3 , τ = Det(P ′ P ′′ P ′′′)

|P ′ × P ′′|2 .

Implicit curves:

k = |T ∗ × T ∗∗|
|T ∗|3 , τ = Det(T ∗ T ∗∗ T ∗∗∗)

|T ∗ × T ∗∗|2 .

6.4. Curvature formulas for implicit curves in(n + 1)-dimensions

Notation
Implicit curve:{F1(x1, . . . , xn+1) = 0} ∩ · · · ∩ {Fn(x1, . . . , xn+1) = 0}.
Gradients of scalars:∇F1 = (F1x1, . . . ,F1xn+1), . . . ,∇Fn = (Fnx1, . . . ,Fnxn+1).
Gradients of vectors:∇(F1, . . . ,Fn) = ((∇F1)

T, . . . , (∇Fn)
T).

Curvature formulas
Curves in 2-dimensions:

k = Det((Tan(F ) ∗ ∇(Tan(F )))T(Tan(F ))T)

|Tan(F )|3 ,

Tan(F ) = (−Fy,Fx).

Curves in 3-dimensions:
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k = |(Tan(F,G) ∗ ∇(Tan(F,G))) × Tan(F,G)|
|Tan(F,G)|3 ,

Tan(F,G) = ∇F × ∇G.

Curves in(n + 1)-dimensions:

k = |(Tan(F1, . . . ,Fn) ∗ ∇(Tan(F1, . . . ,Fn))) ∧ Tan(F1, . . . ,Fn)|
|Tan(F1, . . . ,Fn)|3 ,

Tan(F1, . . . ,Fn) = Det
(
eT (∇F1)

T . . . (∇Fn)
T
)
,

|u ∧ v|2 = |u|2|v|2 − (u • v)2.

7. Open questions

Although we have presented many elegant curvature formulas for implicit curves and surface
still remains some work to be done. We close with a few open problems for future research.

Problem 1. Derive closed formulas for higher order curvatures for implicit curves in(n+1)-dimensions.
Here we have derived closed formulas only for the curvature in(n+ 1)-dimensions and for the torsion
3-dimensions. Can elegant closed formulas be derived for the higher order analogues of the tor
implicit curves in(n + 1)-dimensions?

Problem 2. Develop curvature formulas for curves lying on implicit surfaces. Here we have develope
curvature formulas only for curves lying inn-dimensional space. What can be said about the curva
for curves lying on implicit surfaces?

Problem 3. Compute curvature formulas for implicit surfaces in(n + 1)-dimensions with co-dimensio
> 1. Apparently at least some of these formulas are known in the German literature (Dombrowsk
p. 164), but I have been unable to derive these expressions or to find these formulas in an easily a
form.

Problem 4. Investigate numerical efficiency and robustness.We have provided many different equivale
formulations for the curvature of an implicit planar curve. In theory, all of these expression are m
matically equivalent, but, in practice, some of these expressions may be more computationally e
or numerically robust for performing actual calculations. We have not considered these issues h
these questions should be looked at in the future.
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