- LIÈGE

 Computer Aided Design

 Computer Aided Design} université

NURBS surfaces

- LIÈGE

 Computer Aided Design

 Computer Aided Design} université

CAD Surfaces

Computer Aided Design

NURBS surfaces

- Basic surfaces
- Biliear patch
- Ruled surfaces
- Extruded surfaces
- Coons patch
- Advanced surface algorithms
- Generalized revolution surfaces
- Profiled surfaces
- Geometric modelling and B-REP topology
- Open questions

- LIÈGE
 Computer Aided Design

 université
NURBS surfaces

Basic surfaces

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Bilinear patches
- Through 4 points, we want to build a surface supported by the 4 straight lines joining the points.

$$
P_{00}, P_{01}, P_{11}, P_{10}
$$

- The surface has the following expression :

$$
S(u, v)=P_{00}(1-u)(1-v)+P_{01}(1-u) v+P_{10} u(1-v)+P_{11} u v
$$

- Hence the transformation
into a B-spline : $\left.\quad S(u, v)=\sum_{i=0}^{1} N_{i}^{1}\left(P_{i 0}(1-v)+P_{i l} v\right)\right)$
$N_{0}^{1}(u)=1-u$

$$
\begin{aligned}
& \left.\begin{array}{l}
N_{0}^{1}(u)=1-u \\
N_{1}^{1}(u)=u
\end{array}\right\} U=\{0,0,1,1\} \\
& \left.\begin{array}{l}
N_{0}^{1}(v)=1-v \\
N_{1}^{1}(v)=v
\end{array}\right\} V=\{0,0,1,1\}
\end{aligned}
$$

Computer Aided Design

NURBS surfaces

- Bilinear square
- Bézier surface of degree 1 in each direction

$$
\begin{aligned}
& S^{w}(u, v)=\sum_{i=0}^{1} \sum_{j=0}^{1} N_{i}^{1}(u) N_{j}^{1}(v) P_{i j}^{w} \\
& U=\{0,0,1,1\} \\
& V=\{0,0,1,1\}
\end{aligned}
$$

- The weights w_{i} are equal to 1 .
- The surface is polynomial (non-rational)

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Extruded surfaces
- Let C be a NURBS curve of degree p, of nodal sequence U, possibly closed, with $n+1$ control points:
$C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) P_{i}^{w} \quad C(u)=\sum_{i=0}^{n} R_{i}^{p}(u) P_{i}$ $U=\left\{u_{0}, \cdots, u_{r}\right\} \quad(r+1$ nodes with $r=n+p+1)$
- We want to extrude this curve along a unit vector W, for a length d.
- What is the expression of the resulting surface as a NURBS ?

Computer Aided Design

NURBS surfaces

- Extruded surfaces
$\operatorname{In} 3 \mathrm{D}: \quad S(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} R_{i j}^{p, q}(u, v) P_{i j}=\sum_{i=0}^{n} R_{i}^{p}(u)\left(P_{i}+v d W\right) \quad W_{i}^{w}=\binom{W w_{i}}{0}$
Using homog. coorg.

$$
\begin{gathered}
S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v) P_{i j}^{w}=\sum_{i=0}^{n} \\
S^{w}(u, v)=\sum_{i=0}^{n} N_{i}^{p}(u)\left((1-v) P_{i 0}^{w}+v P_{i 1}^{w}\right) \\
P_{i 0}^{w}=P_{i}^{w} \\
P_{i l}^{w}=P_{i}^{w}+d W_{i}^{w} \\
S^{w}(u, v)=\sum_{i=0}^{n} N_{i}^{p}(u) \sum_{j=0}^{1} N_{j}^{1}(v) P_{i j}^{w} \\
V=\{0,0,1,1\}
\end{gathered}
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- Extruded surfaces

$$
\begin{aligned}
& S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{1} N_{i}^{p}(u) N_{j}^{1}(v) P_{i j}^{w} \\
& U=\left\{u_{0}, \cdots, u_{r}\right\} \quad P_{i 0}^{w}=P_{i}^{w} \\
& V=\{0,0,1,1\} \quad P_{i l}^{w}=P_{i}^{w}+d W_{i}^{w} \\
& W_{i}^{w}=\binom{W w_{i}}{0} \\
& S(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{1} R_{i j}^{p, 1}(u, v) P_{i j} \\
& P_{i 0}=P_{i} \\
& P_{i l}=P_{i}+d W \\
& w_{i 0}=w_{i} \\
& w_{i l}=w_{i}
\end{aligned}
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Ruled surfaces
- We have two curves

$$
\begin{array}{ll}
C_{0}^{w}(u)=\sum_{i=0}^{n_{0}} N_{i}^{p_{0}}(u) P_{i 0}^{w} & C_{1}^{w}(u)=\sum_{i=0}^{n_{1}} N_{i}^{p_{1}}(u) P_{i l}^{w} \\
C_{0}(u)=\sum_{i=0}^{n_{0}} R_{i}^{p_{0}}(u) P_{i 0} & C_{1}(u)=\sum_{i=0}^{n_{1}} R_{i}^{p_{1}}(u) P_{i l} \\
U_{0}=\left\{u_{00}, \cdots, u_{r 0}\right\} & U_{1}=\left\{u_{01}, \cdots, u_{r 1}\right\}
\end{array}
$$

- We want a ruled surface in the direction v, i.e a linear interpolation between $C_{0}(u)$ and $C_{1}(u)$.

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Ruled surfaces
- There are conditions on the curves $C_{0}(u)$ and $C_{1}(u)$.
- Same parametrization (compatible nodal sequences)

$$
\left.\begin{array}{l}
U_{0}=U_{1}=U \\
p_{0}=p_{1}=p
\end{array}\right\} n_{0}=n_{1}=n \Rightarrow\left\{\begin{array}{l}
C_{0}^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) P_{i 0}^{w} \\
C_{1}^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) P_{i l}^{w}
\end{array}\right.
$$

- The surface is then expressed simply

$$
\begin{aligned}
& S^{w}(u, v)=(1-v) C_{0}^{w}(u)+v C_{1}^{w}(u) \\
& S^{w}(u, v)=\sum_{j=0}^{1} N_{j}^{1}(v) C_{j}^{w}(u)
\end{aligned}
$$

thus,
$S^{\text {thus, }}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{1} N_{i}^{p}(u) N_{j}^{1}(v) P_{i j}^{w}$

$$
S(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{1} R_{i j}^{p, 1}(u, v) P_{i j 11}
$$

Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- What to do if conditions on the curves $C_{0}(u)$ and $C_{1}(u)$ are not met?

1 - Make sure that the parametric interval matches

- Affine transformation of one of the parameters (see chapter 3)

2 - Degree elevation towards the highest degree $=\max \left(p_{0}, p_{1}\right)$

- Transformation into a set of Bézier curves by node saturation (chap. 4)
- Degree elevation for each Bézier curves with Forrest's relations (chap. 3)
- Deletion of multiple nodes (chap. 4)

3 - Node insertion (chap. 4)

- Nodes of $C_{0}(u)$ not found in $C_{1}(u)$ are introduced in $C_{1}(u)$ and reciprocally
" These operations do not alter the geometry of the support curves
- Excepted the parametrization if point (1) is not satisfied

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- Some examples of ruled surfaces

$$
\begin{aligned}
& U=\{0,0,0,0,1,2,3,3,3,3\} \quad p=3 \\
& V=\{0,0,1,1\} \quad q=1
\end{aligned}
$$

- LIÈGE université
 NURBS surfaces

- Cylinders

$$
U=\{-3,-2,-1,0, \cdots, 13,14,15\} \quad p=3
$$

$$
U=\{0,0,0,1,1,2,2,3,3,3\} \quad p=2
$$

$$
V=\{0,0,1,1\} \quad q=1
$$

Computer Aided Design

NURBS surfaces

- Cones

Computer Aided Design

NURBS surfaces

- Hyperboloids

- Coons patches
- Can we represent a Coons patch exactly with a NURBS surface?
- 4 boundary curves
- Compatible ; i.e. NURBS :
- of same nodal sequence and same degree two by two
- nodal sequences yield curves with parameters contained between 0 and 1 (for more simplicity)
- whose extremities are matching two by two
- Curves C^{u} of nodal sequence U, degree p, n control points $P_{i j}^{u}$ for C_{j}^{u}
- Curves C^{v} of nodal sequence V, degree q, m control points $P_{i j}^{v}$ for C_{j}^{v}

Computer Aided Design

NURBS surfaces

- Coons patch = assembly of ruled surfaces

$$
\begin{aligned}
& S_{1}(u, v)=(1-v) C_{0}^{u}(u)+v C_{1}^{u}(u) \\
& S_{2}(u, v)=(1-u) C_{0}^{v}(v)+u C_{1}^{v}(v) \\
& S_{3}(u, v)=(1-u)(1-v) A+u(1-v) B+v(1-u) D+u v C
\end{aligned}
$$

- If the boundary curves are compatible NURBS curves, we can represent S_{1}, S_{2} and S_{3} as NURBS surfaces...
- Is the sum $S(u, v)=S_{1}(u, v)+S_{2}(u, v)-S_{3}(u, v)$ a NURBS as well ?

Computer Aided Design

NURBS surfaces

- The surfaces S_{1} et S_{2} are ruled surfaces :

$$
\begin{array}{ll}
S_{1}(u, v)=(1-v) C_{0}^{u}(u)+v C_{1}^{u}(u) & S_{2}(u, v)=(1-u) C_{0}^{v}(v)+u C_{1}^{v}(v) \\
S_{1}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{1} N_{i}^{p}(u) N_{j}^{1}(v) P_{i j}^{1} & S_{2}(u, v)=\sum_{i=0}^{1} \sum_{j=0}^{m} N_{i}^{1}(u) N_{j}^{q}(v) P_{i j}^{2} \\
U_{1}=U & U_{2}=\{0,0,1,1\} \\
V_{1}=\{0,0,1,1\} & V_{2}=V \\
P_{i j}^{1}=P_{i j}^{u} & P_{i j}^{2}=P_{j i}^{v}
\end{array}
$$

Computer Aided Design

NURBS surfaces

- The surface S_{3} is a bilinear patch

$$
\begin{array}{cl}
S_{3}(u, v)=\sum_{i=0}^{1} \sum_{j=0}^{1} N_{i}^{1}(u) N_{j}^{1}(v) P_{i j}^{3} \\
U=\{0,0,1,1\} & P_{00}^{3}=A \\
V=\{0,0,1,1\} & P_{10}^{3}=B \\
P_{01}^{3}=D \\
P_{11}^{3}=C
\end{array}
$$

Computer Aided Design

NURBS surfaces

- The «sum» between several NURBS is possible (it is a linear combination ; cf. partition of unity \& affine invariance)

$$
\begin{aligned}
S(u, v) & =S_{1}(u, v)+S_{2}(u, v)-S_{3}(u, v) \\
P_{i j} \quad=? \quad P_{i j}^{1} \quad+\quad P_{i j}^{2} & -
\end{aligned} P_{i j}^{3}
$$

- But
- No conformity of the surfaces (different \# of CP)
- Different shape functions (because nodal sequences are different)

LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- The «sum» between several NURBS is possible (it is a linear combination ; cf. partition of unity \& affine invariance) - if they are similar.

$$
S(u, v)=S_{1}(u, v)+S_{2}(\underset{v}{u}, v)-S_{3}(u, v)
$$

$$
\begin{array}{cccc}
P_{i j} & P_{i j}^{1} & P_{i j}^{2} & P_{i j}^{3}
\end{array}
$$

$U^{*}=?$	$U_{1}=U$	$U_{2}=\{0,0,1,1\}$	$U_{3}=\{0,0,1,1\}$
$V^{*}=?$	$V_{1}=\{0,0,1,1\}$	$V_{2}=V$	$V_{3}=\{0,0,1,1\}$
$p^{*}=?$	$p_{1}=p$	$p_{2}=1$	$p_{3}=1$
$q^{*}=?$	$q_{1}=1$	$q_{2}=q$	$q_{3}=1$

- Nodal sequences must correspond.

LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- The «sum» between several NURBS is possible (it is a linear combination ; cf. partition of unity \& affine invariance) - if they are similar.

- LIÈGE université
 Computer Aided Design
 NURBS surfaces

- Each operation (degree elevation or node insertion) adds control points so as to make "compatible" surfaces
- Finally, one can write

$$
\begin{aligned}
& S(u, v)=S_{1}(u, v)+S_{2}(\underline{u}, v)-S_{3}(u, v) \\
& P_{i j}^{*} \quad=\quad P_{i j}^{1^{*}} \quad+\quad P_{i j}^{2^{*}} \quad-\quad P_{i j}^{3^{*}} \\
& U^{*}=U \\
& U_{1}^{*}=U \\
& V_{1}^{*}=V \\
& p_{1}^{*}=p \\
& q_{1}^{*}=q \\
& U_{2}^{*}=U \\
& U_{3}^{*}=U \\
& V_{2}^{*}=V \\
& p_{2}=p \\
& q_{2}^{*}=q \\
& V_{3}^{*}=V \\
& p_{3}^{*}=p \\
& q_{3}^{*}=q
\end{aligned}
$$

Computer Aided Design

NURBS surfaces

- Degree elevation (in u or v) of a surface whose nodal sequence is that of a Bézier curve :
- Identical to the degree elevation ease of a Bézier curve
- Forrest relations written on the set of control points

$$
\begin{aligned}
& \text { for } j=0 \cdots q \\
& Q_{0 j}=P_{0 j} \\
& \text { for } i=1 \cdots p \quad Q_{i j}=P_{i-1, j}+\frac{(p+1-i)}{(p+1)}\left(P_{i j}-P_{i-1, j}\right) \\
& Q_{p+1, j}=P_{p j}
\end{aligned}
$$

- The nodal sequence is then augmented
- Node insertions in a B-Spline surface
- see chapter 5

Computer Aided Design

NURBS surfaces

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- Global modification of curves / surfaces
- Affine transformation of control points
- The affine invariance assures us that the resulting curve is what we want.
- Ex. Ellipse from a circle - scaling in a single direction.

Computer Aided Design

NURBS surfaces

(some) advanced algorithms

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Profiled surfaces
a) Generalization of the surface of revolution
- Each point of a generating curve (the profile curve) follows a trajectory whose radius is defined by a second curve (the trajectory curve)
- We assume without loss of generality that $P(u)$ is in the $(x z)$ plane, and that $T(v)$ is in the $(x y)$ plane. The axis of revolution is along $\mathrm{O} z$.

- LIÈGE
 Computer Aided Design

NURBS surfaces

- Generalization of surfaces of revolution
- Lets transform T to polar coordinates : it corresponds to a simple rotation around $z+$ a uniform scaling in $x-y$ (not z):

$$
T(v)=\left(\begin{array}{c}
x^{t}(v) \\
y^{t}(v) \\
0
\end{array}\right)=\left(\begin{array}{c}
r(v) \cos \theta(v) \\
r(v) \sin \theta(v) \\
0
\end{array}\right)
$$

- The related transformation matrix is therefore :

$$
M(v)=S(v) \cdot R(v)=\left(\begin{array}{lll}
r & 0 & 0 \\
0 & r & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
r \cos \theta & -r \sin \theta & 0 \\
r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Let's apply this to P :

$$
P(u)=\left(\begin{array}{c}
x^{p}(u) \\
0 \\
z^{p}(u)
\end{array}\right) \rightarrow \quad S(u, v)=M(v) \cdot P(u)=\left(\begin{array}{c}
x^{p}(u) \cdot r(v) \cos \theta(v) \\
x^{p}(u) \cdot r(v) \sin \theta(v) \\
z^{p}(u)
\end{array}\right)=\left(\begin{array}{c}
x^{p}(u) \cdot x^{t}(v) \\
x^{p}(u) \cdot y^{t}(v) \\
z^{p}(u)
\end{array}\right)
$$

- LIÈGE université
 Computer Aided Design
 NURBS surfaces

- Generalization of surfaces of revolution
- The analytical expression of the surface is therefore simply:

$$
S(u, v)=\left(\begin{array}{c}
x^{p}(u) \cdot x^{t}(v) \\
x^{p}(u) \cdot y^{t}(v) \\
z^{p}(u)
\end{array}\right)
$$

- Can we express it as a NURBS?

- LIÈGE université
 Computer Aided Design
 NURBS surfaces

- Generalization of surfaces of revolution
- New control points are located with reference to the z axis
- We have to deal with homogeneous coordinates

$$
S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v) P_{i j}^{w}
$$

$$
\begin{aligned}
C^{w}(u) & =\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w} \\
U & =\left\{u_{0}, \cdots, u_{r}\right\} \\
T^{w}(v) & =\sum_{i=0}^{m} N_{i}^{q}(v) T_{i}^{w} \\
V & =\left\{v_{0}, \cdots, v_{s}\right\}
\end{aligned}
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

$S(u, v)=\left(\begin{array}{c}x^{p}(u) \cdot x^{t}(v) \\ x^{p}(u) \cdot y^{t}(v) \\ z^{p}(u)\end{array}\right) \equiv\left(\begin{array}{c}x^{p}(u) x^{t}(v) w^{p}(u) w^{t}(v) \\ x^{p}(u) y^{t}(v) w^{p}(u) w^{t}(v) \\ z^{p}(u) w^{p}(u) w^{t}(v) \\ w^{p}(u) w^{t}(v)\end{array}\right)$
$C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w}=\left(\begin{array}{c}x^{p}(u) w^{p}(u) \\ 0 \\ z^{p}(u) w^{p}(u) \\ w^{p}(u)\end{array}\right)=\left|\begin{array}{c}\sum_{i=0}^{n} N_{i}^{p}(u) x_{i}^{p} w_{i}^{p} \\ 0 \\ \sum_{i=0}^{n} N_{i}^{p}(u) z_{i}^{p} w_{i}^{p} \\ \sum_{i=0}^{n} N_{i}^{p}(u) w_{i}^{p}\end{array}\right|$
$T^{w}(v)=\sum_{j=0}^{m} N_{j}^{q}(v) T_{j}^{w}=\left(\begin{array}{c}x^{t}(v) w^{t}(v) \\ y^{t}(v) w^{t}(v) \\ 0 \\ w^{t}(v)\end{array}\right)=\left(\begin{array}{c}\sum_{j=0}^{m} N_{j}^{q}(v) x_{j}^{t} w_{j}^{t} \\ \sum_{j=0}^{m} N_{j}^{q}(v) y_{j}^{t} w_{j}^{t} \\ 0 \\ \sum_{j=0}^{m} N_{j}^{q}(v) w_{j}^{t}\end{array}\right)$

- Determination of the CPs

$$
\begin{aligned}
& x^{p}(u) x^{t}(v) w^{p}(u) w^{t}(v) \\
= & \sum_{i=0}^{n} N_{i}^{p}(u) x_{i}^{p} w_{i}^{p} \cdot \sum_{j=0}^{m} N_{j}^{q}(v) x_{j}^{t} w_{j}^{t} \\
= & \sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v) x_{i}^{p} w_{i}^{p} x_{j}^{t} w_{j}^{t}
\end{aligned}
$$

Same for the other coordinates:

$$
\begin{array}{r}
S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v)\left|\begin{array}{c}
x_{i}^{p} x_{j}^{t} w_{i}^{p} w_{j}^{t} \\
x_{i}^{p} y_{j}^{t} w_{i}^{p} w_{j}^{t} \\
z_{i}^{p} w_{i}^{p} w_{j}^{t} \\
w_{i}^{p} w_{j}^{t}
\end{array}\right| \\
\text { (} n+1 \text {). (m+1) control points } 33
\end{array}
$$

- LIÈGE université
 Computer Aided Design
 NURBS surfaces

- Initial data

$$
\begin{aligned}
& C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w} \\
& U=\left\{u_{0}, \cdots, u_{r}\right\} \quad C_{i}^{w}=\left(\begin{array}{c}
x_{i}^{p} w_{i}^{p} \\
0 \\
z_{i}^{p} w_{i}^{p} \\
w_{i}^{p}
\end{array}\right) \quad T^{w}(v)=\sum_{i=0}^{m} N_{i}^{q}(v) T_{i}^{w} \\
& V=\left\{v_{0}, \cdots, v_{s}\right\} \quad T_{j}^{w}=\left(\left.\begin{array}{c}
x_{j}^{t} w_{j}^{t} \\
y_{j}^{t} w_{j}^{t} \\
0 \\
w_{j}^{t}
\end{array} \right\rvert\,\right.
\end{aligned}
$$

- The surface is expressed :

$$
\begin{aligned}
& S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v) P_{i j}^{w} \quad P_{i j}^{w}=\left|\begin{array}{c}
x_{i}^{p} y_{j}^{t} w_{i}^{p} w_{j}^{t} \\
z_{i}^{p} w_{i}^{p} w_{j}^{t} \\
w_{i}^{p} w_{j}^{t}
\end{array}\right| \\
& V=\left\{u_{0}, \cdots, u_{r}\right\} \quad V=\left\{v_{0}, \cdots, v_{s}\right\}
\end{aligned}
$$

Computer Aided Design

NURBS surfaces

L. Piegl « the NURBS book 35

Computer Aided Design

NURBS surfaces

- Surface of revolution
- Let us have a curve (generating curve) that we want to revolve around an axis W, by a certain angle α.

$$
C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) P_{i}^{w}
$$

- Circular arc of angle $\alpha<=2 \pi / 3$ (actually, $<\pi$)

$$
\begin{aligned}
& P_{0}^{w}=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0} \\
1
\end{array}\right) \\
& P_{1}^{w}=\left(\begin{array}{c}
x_{1} \cos \alpha / 2 \\
y_{1} \cos \alpha / 2 \\
z_{1} \cos \alpha / 2 \\
\cos \alpha / 2
\end{array}\right)
\end{aligned}
$$

$$
P_{2}^{w}=\left(\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2} \\
1
\end{array}\right)
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Without loss of generality, let's assume that
$-\alpha=2 \pi$
- A rotation axis coincident with the axis z
- Curve C lies in the plane $x z: Q_{0}^{w}(u)=C^{w}(u)$
- Computation of the points $Q_{j}^{w}(u)$

$$
\begin{aligned}
& Q_{0}^{w}(u)=\left(\begin{array}{c}
x(u) \cdot w(u) \\
0 \cdot w(u) \\
z(u) \cdot w(u) \\
w(u)
\end{array}\right) \quad Q_{1}^{w}(u)=\left(\begin{array}{c}
2 x \cos \pi / 3 \cdot w \cdot 1 / 2 \\
2 x \sin \pi / 3 \cdot w \cdot 1 / 2 \\
z \cdot w \cdot 1 / 2 \\
w \cdot 1 / 2
\end{array}\right) \\
& Q_{2}^{w}(u)=\left(\begin{array}{c}
\cos 2 \pi / 3 \cdot w \\
x \sin 2 \pi / 3 \cdot w \\
z \cdot w
\end{array}\right) \quad \text { etc... }
\end{aligned}
$$

LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Definition as a NURBS

$$
\begin{gathered}
S^{w}(u, v)=\sum_{j=0}^{m} N_{j}^{2}(v) Q_{j}^{w}(u)=\sum_{j=0}^{m} N_{j}^{2}(v) \sum_{i=0}^{n} N_{i}^{p}(u) P_{i j}^{w} \\
\begin{array}{l}
\text { Rotation + scaling } \\
\text { of the curve }
\end{array} \\
=\begin{array}{l}
\text { Rotation + scaling of } \\
\text { control points } \\
\text { of the curve }
\end{array}
\end{gathered}
$$

- The operation is possible because NURBS curves are invariant by affine transformations

$$
S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{2}(v) P_{i j}^{w}
$$

Computer Aided Design

NURBS surfaces

- Example - revolution of 90° of a curve around the axis z :

$$
P_{0}^{w}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) P_{1}^{w}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right) P_{2}^{w}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right) P_{3}^{w}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right)
$$

- Calculation of circle's parameters
- Rotation / scaling of CP $\quad{ }^{w=\cos \frac{\alpha}{2}=\frac{\sqrt{2}}{2}}$
$S^{w}(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{2} N_{i}^{3}(u) N_{j}^{2}(v) P_{i j}^{w}$
$V=\{0,0,0,1,1,1\}$

- LIÈGE université
 Computer Aided Design
 NURBS surfaces

- Example - revolution of 90° of a curve around the axis z :

$$
\begin{aligned}
& P_{00}^{w}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) P_{10}^{w}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right) P_{20}^{w}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right) P_{30}^{w}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \\
& P_{02}^{w}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right) P_{12}^{w}=\left(\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right) P_{22}^{w}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) P_{32}^{w}=\left(\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right) \\
& P_{01}^{w}=\left(\begin{array}{l}
w \\
w \\
0 \\
w
\end{array}\right) P_{11}^{w}=\left(\begin{array}{l}
2 w \\
2 w \\
w \\
w
\end{array}\right)_{21}^{w}=\left(\begin{array}{c}
w \\
w \\
w \\
w
\end{array}\right) P_{31}^{w}=\left(\begin{array}{c}
w \\
w \\
2 w \\
w
\end{array}\right)
\end{aligned}
$$

$S^{w}(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{2} N_{i}^{3}(u) N_{j}^{2}(v) P_{i j}^{w}$

$$
w=\cos \frac{\alpha}{2}=\frac{\sqrt{2}}{2}
$$

$$
\begin{align*}
& U=\{0,0,0,0,1,1,1,1\} \\
& V=\{0,0,0,1,1,1\} \quad 41 \tag{41}
\end{align*}
$$

Computer Aided Design

NURBS surfaces

Computer Aided Design

NURBS surfaces

- An egg ...
- Number of control points?
- Degree of the curve
- Position of CP
- Weight of CP

Computer Aided Design

NURBS surfaces

- An egg ...
- control points of the curve
- Revolution around z

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Profiled surfaces
b) profile with a controlled section obtained by sweeping
- same scheme:
- curved trajectory
- Section curve
- with an orientation matrix: $M(v)$
- The "analytic" surface is

$$
S(u, v)=T(v)+M(v) C(u)
$$

- Two possibilities

1- $M(v)$ is an identity (constant orientation)

2- $M(v)$ depends on the trajectory
In these two cases, $M(v)$ does not correspond to a generalized rotation (no fixed axis of rotation)

Computer Aided Design

NURBS surfaces

- Case 1 : when $M(v)$ is an identity: $S(u, v)=T(v)+C(u)$

The section is simply moved without changing the orientation.

$$
\begin{aligned}
& C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w}=\left|\begin{array}{c}
\sum_{i=0}^{n} N_{i}^{p}(u) x_{i}^{c} w_{i}^{c} \\
\vdots \\
\sum_{i=0}^{n} N_{i}^{p}(u) w_{i}^{c}
\end{array}\right| \\
& \left.T^{w}(v)=\sum_{i=0}^{m} N_{i}^{q}(v) T_{i}^{w}=\left\lvert\, \begin{array}{c}
\sum_{i=0}^{m} N_{i}^{q}(u) x_{i}^{t} w_{i}^{t} \\
\vdots \\
\sum_{i=0}^{n} N_{i}^{q}(u) w_{i}^{t}
\end{array}\right.\right)
\end{aligned}
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

$$
\left.\begin{array}{c}
S(u, v)=T(v)+C(u) \\
\left.C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w}=\left\lvert\, \begin{array}{c}
\sum_{i=0}^{n} N_{i}^{p}(u) x_{i}^{c} w_{i}^{c} \\
\vdots \\
\sum_{i=0}^{n} N_{i}^{p}(u) w_{i}^{c}
\end{array}\right.\right)
\end{array} T^{w}(v)=\sum_{i=0}^{m} N_{j}^{q}(v) T_{i}^{w}=\left\lvert\, \begin{array}{c}
\sum_{j=0}^{m} N_{i}^{q}(v) x_{i}^{t} w_{i}^{t} \\
\vdots \\
\sum_{j=0}^{n} N_{j}^{q}(v) w_{i}^{t}
\end{array}\right.\right)
$$ université

Computer Aided Design

NURBS surfaces

- Case $1: M(v)$ is an identity : $S(u, v)=T(v)+C(u)$

$$
\begin{aligned}
& C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w} \quad U=\left\{u_{0}, \cdots, u_{r}\right\} \\
& T^{w}(v)=\sum_{i=0}^{m} N_{i}^{q}(v) T_{i}^{w} \quad V=\left\{v_{0}, \cdots, v_{s}\right\} \\
& S^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v) P_{i j}^{w}
\end{aligned}
$$

$$
C_{i}^{w}=\left(\begin{array}{c}
x_{i}^{c} w_{i}^{c} \\
z_{i}^{c} w_{i}^{c} \\
z_{i}^{c} w_{i}^{c} \\
w_{i}^{c}
\end{array}\right) \quad T_{j}^{w}=\left(\begin{array}{c}
x_{j}^{t} w_{j}^{t} \\
y_{j}^{t} w_{j}^{t} \\
z_{j}^{t} w_{j}^{t} \\
w_{j}^{t}
\end{array}\right) \quad P_{i j}^{w}=\left(\begin{array}{c}
\left(x_{i}^{c}+x_{j}^{t}\right) w_{i}^{c} w_{j}^{t} \\
\left(y_{i}^{c}+y_{j}^{t}\right) w_{i}^{c} w_{j}^{t} \\
\left(z_{i}^{c}+z_{j}^{t}\right) w_{i}^{c} w_{j}^{t} \\
w_{i}^{c} w_{j}^{t}
\end{array}\right)
$$

Computer Aided Design

NURBS surfaces

- Case 2: $M(v)$ is imposed : $S(u, v)=T(v)+M(v) C(u)$

Purpose : align the section along the trajectory curve

- Determination of $M(v)$
- Global coordinates : $\{O, X, Y, Z\}$
- Local coordinates along $T(v)$:
$\{o(v), x(v), y(v), z(v)\}$

$$
\begin{aligned}
& \{o(v), x(v), y(v), z(v)\} \\
& o(v)=T(v) \\
& x(v)=\frac{T^{\prime}(v)}{\left|T^{\prime}(v)\right|} \text { (tangent vector) }
\end{aligned}
$$

- Let $B(v)$ a vectorial function satisfying $B(v) \cdot x(v)=0 \forall v$, that will be computed later. It will serve as a reference axis to set the orientation of the section curve along the trajectory :

$$
z(v)=\frac{B(v)}{|B(v)|} \quad y(v)=z(v) \times x(v)
$$

Computer Aided Design

NURBS surfaces

- $M(v)$ is a matrix that allows to transform the coordinates from $\{o(v), x(v), y(v), z(v)\}$ to $\{O, X, Y, Z\}$ (trivial)
- This problem is that $M(v)$ does not lead to a NURBS surface in the general case, because the dependence in v is arbitrary.
- The surface that we want to build is therefore an approximation.

$$
\begin{aligned}
& S(u, v)=T(v)+M(v) C(u) \\
& \widetilde{S}^{w}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i}^{p}(u) N_{j}^{q}(v) P_{i j}^{w}
\end{aligned}
$$

- How to determine the $P_{i j}$?

- LIĖGE Computer Aided Design université

 NURBS surfaces

 NURBS surfaces}

- Two techniques (among others)

1) With the algebraic form $S(u, v)=T(v)+M(v) C(u)$
, generate a grid of $n \times m$ points exactly on $S(u, v)$. By interpolation, determine positions of CP of a surface passing by these points (not described here)

- Disadvantage : no isovalues of \hat{S} according to u or v is exactly on S

2) By interpolating many instances of the section (oriented appropriately by M) along the trajectory, using a technique known as «skinning» (described in the sequel)

- Allows to interpolate exactly the trajectory and the instances of the profile at nodes $v_{i}-($ but the surface remains an approximation everywhere else)

- LIÈGE

 Computer Aided Design

 Computer Aided Design} université

NURBS surfaces

The technique described here :

- We place many instances of the section along the trajectory. These are oriented appropriately by $M(v)$.

$$
C_{k}(u) \quad, \quad k=0 \cdots K
$$

- We then build a surface (skin) interpolating exactly these instances
- The $C_{k}(u)$ are therefore isoparametrics of the skin $P(u, v)$ for constant values of v,
moreover, they are NURBS : $C_{k}^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i, k}^{w}$
- Problems to solve :

$$
U=\left\{u_{0}, \cdots, u_{r}\right\}
$$

- Computation of the position of points of interpolation along the trajectory curve (especially the vectorial function $B(v)$)
- Computation of the final surface

Computer Aided Design

NURBS surfaces

- The surface has the following form :

$$
\widetilde{S}^{w}(u, v)=\sum_{i=0}^{n} \sum_{k=0}^{K} N_{i}^{p}(u) N_{k}^{q}(v) P_{i, k}^{w}
$$

- We have to determine :
- the values of the parameter v for which curves C_{k} interpolate $\widetilde{S}^{w}(u, v)$. We shall call these values $\bar{V}=\left\{\bar{v}_{0}, \cdots, \bar{v}_{K}\right\}$
- the nodal sequence $V=\left\{v_{0}, \cdots, v_{s}\right\}$
- the control points $P_{i, k}^{w} \ldots$

- LIÈGE

 Computer Aided Design

 Computer Aided Design} université

NURBS surfaces

- Computation of values \bar{v}_{i} for which we interpolate, and deduction of the nodal sequence V
- The number of nodes of V is $s+1$
- The number of interpolated positions is $K+1$ (min. given by the user)
- The degree of the trajectory is q (imposed)

We want, if possible, to keep the nodal sequence of the trajectory (same domain for v).
If $s=K+q+1$ everything is OK.
If $s \leq K+q$ inserting nodes in the nodal sequence is needed
$\rightarrow K+q-s+1$ nodal insertions
If $s>K+q+1$, add interpolated positions
in such a way that $s=K+q+1$

Computer Aided Design

NURBS surfaces

- Case where we must make nodal insertions
- We aim at an approximately regular repartition
- The exact location of these insertions does not matter
- For instance, subdividing the longest nodal interval in two equal parts (and repeat this $K+q-s+1$ times) is suitable.

$$
\begin{aligned}
& V=\{0,0,0,1,2,4,8,10,10,10\} \\
& m \\
&=3 \\
& V^{\prime}=\{0,0,0,1,2,4,6,8,10,10,10\} \\
& V^{\prime}=\{0,0,0,1,2,3,4,6,8,10,10,10\} \\
& V^{\prime}=\{0,0,0,1,2,3,4,5,6,8,10,10,10\}
\end{aligned}
$$

- The position of the new control points of the trajectory $T(v)$ is not needed, because its nodal sequence is not modified !!!

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Computation of the values of the parameter v for the interpolation, $\bar{V}=\left\{\bar{v}_{k}\right\}, k=0, \cdots, K$
- The repartition depends on the nodal sequence v_{k}
- For a node have a multiplicity of q, the curve interpolates one of the CPs, therefore this value must be part of the \bar{v}_{k}
A sliding average on q nodes (where q is the degree) is a good solution:

$$
\bar{v}_{k}=\frac{1}{q} \sum_{i=1}^{q} v_{k+i}, \quad k=1, \cdots, K-1, \quad \bar{v}_{0}=v_{0} \quad \bar{v}_{K}=v_{s}
$$

Example with $q=2: 9$ control points and as many interpolation points

$$
\begin{aligned}
& V^{\prime}=\{0,0,0,1,2,3,3,6,8,10,10,10\} \\
& \bar{V}=\left\{0, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, 3, \frac{9}{2}, 7,9,10\right\} \\
&
\end{aligned}
$$

Computer Aided Design

NURBS surfaces

- Two things remain to be done

1 : computation of positions of the instances of the profile curve, i.e. computations of positions of CPs of each instance C_{k}

2 : computation of the position of control points of curves passing through the control points of the instances

NURBS surfaces

- Computation of the instances of the section (profile)

$$
\begin{aligned}
& S(u, v)=T(v)+M(v) C(u) \\
& C^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i}^{w}
\end{aligned}
$$

$$
\begin{aligned}
& \{O, X, Y, Z\} \\
& \left\{o\left(\bar{v}_{k}\right), x\left(\bar{v}_{k}\right), y\left(\bar{v}_{k}\right), z\left(\bar{v}_{k}\right)\right\} \\
& o\left(\bar{v}_{k}\right)=T\left(\bar{v}_{k}\right) \quad B\left(\bar{v}_{k}\right) \text { given }
\end{aligned}
$$

$$
C_{k}^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i, k}^{w}
$$

$$
x\left(\bar{v}_{k}\right)=\frac{T^{\prime}\left(\bar{v}_{k}\right)}{\left|T^{\prime}\left(\bar{v}_{k}\right)\right|} \quad z\left(\bar{v}_{k}\right)=\frac{B\left(\bar{v}_{k}\right)}{\left|B\left(\bar{v}_{k}\right)\right|}
$$

$$
y\left(\bar{v}_{k}\right)=z\left(\bar{v}_{k}\right) \times x\left(\bar{v}_{k}\right)
$$

$$
C_{i, k}^{w}=M^{w}\left(\bar{v}_{k}\right) \cdot C_{i}^{w}
$$

$$
C_{i}^{w}=\left(\begin{array}{c}
x_{i} w_{i} \\
y_{i} w_{i} \\
z_{i} w_{i} \\
w_{i}
\end{array}\right)
$$

$$
C_{i, k}^{w}=\left(\begin{array}{c}
x_{i, k} w_{i, k} \\
y_{i, k} w_{i, k} \\
z_{i, k} w_{i, k} \\
w_{i, k}
\end{array}\right)
$$

$$
M^{w}\left(\bar{v}_{k}\right)=\left(\left.\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
x\left(\bar{v}_{k}\right) & y\left(\bar{v}_{k}\right) & z\left(\bar{v}_{k}\right) & o\left(\bar{v}_{k}\right) \\
\mid & \mid & \mid & \mid \\
0 & 0 & 0 & 1
\end{array} \right\rvert\, \cdot w\left(\bar{v}_{k}\right)\right.
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- Computation of $B\left(\bar{v}_{k}\right)$
- Purpose : Have a similar orientation as the Frenet frame...

Three problems if $B\left(\bar{v}_{k}\right)$ is related to Frenet frame:
1- $B\left(\bar{v}_{k}\right)$ is not defined at places where $T(v)$ is a straight line (locally) or at inflexion points

2- $B\left(\bar{v}_{k}\right)$ abruptly changes its orientation before and after an inflexion point

3- For three-dimensional trajectories, vectors obtained by the use of $B\left(\bar{v}_{k}\right)$ can turn arbitrarily fast around the curve
... by avoiding problems raised by the following definition (Frenet)

$$
B\left(\bar{v}_{k}\right)=\frac{T^{\prime}\left(\bar{v}_{k}\right) \times T^{\prime \prime}\left(\bar{v}_{k}\right)}{\left|T^{\prime}\left(\bar{v}_{k}\right) \times T^{\prime \prime}\left(\bar{v}_{k}\right)\right|}
$$

- Computation of $B\left(\bar{v}_{k}\right)$
- We want a result like that :

Attention: avoid having $T_{k} / / B_{k-1}$ Therefore K must such that the curve "turns" less than 90° between \bar{v}_{k-1} and \bar{v}_{k})

- Method of the normal projection*
- We are going to compute explicitly the values of for eachBbārameter
- Let the increasing sequiencé of the parameter v. We compute by the folldwing (way) :

$$
T_{k}=\frac{T^{\prime}\left(\bar{v}_{k}\right)}{\left|T^{\prime}\left(\bar{v}_{k}\right)\right|}
$$

$4 \quad b_{k}=B_{k-1}-\left(B_{k-1} \cdot T_{k}\right) T_{k}$
$B_{k}=\frac{b_{k}}{\left|b_{k}\right|} \quad \begin{array}{r}B_{0} \text { is imposed } \\ \text { by the user }\end{array}$

* P. Stiltanen and C. Woodward, Normal orientation methods for 3D offset curves, sweep surfaces and skinning, Proc. Eurographics'92, 11(3), pp. C 449 - C 457, 1992.

- LIÈGE

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Case of periodic curves
- In general, $B_{K} \neq B_{0}$
- We can do the computation in two opposite directions:

$$
\begin{aligned}
& \hat{B}_{0} \rightarrow \hat{B}_{K} \\
& \bar{B}_{K} \rightarrow \bar{B}_{0}
\end{aligned}
$$

- Then we set

$$
B_{k}=\frac{\bar{B}_{k}+\hat{B}_{k}}{2}, k=1, \cdots, K-1
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Global interpolation on a curve
- We have interpolation points $C_{i, k}^{w}$
- We have a nodal sequence : $V^{\prime}=\left\{v_{i}^{\prime}\right\}, i=0, \cdots, s$
- We have the values of v for the interpolation: $\bar{V}=\left\{\bar{v}_{j}\right\}, j=0, \cdots, K$

- Now, we need to compute the expression of curves passing through the CP of the instances of the profile:

$$
T_{i}^{w}(v)=\sum_{k=0}^{K} N_{k}^{p}(v) P_{i, k}^{w} \text { such that } T_{i}^{w}\left(\bar{v}_{k}\right)=C_{i, k}^{w} \quad \forall k=0, \cdots, K
$$

- The control points of these curves are the control points of the surface that is sought. Why?
- because the expression of the surface is separable in u and v. See how we were able to compute the control points of an isoparametric on a B-Spline surface - see e.g. slide 36 of chapter 5

Computer Aided Design

NURBS surfaces

$$
T_{i}^{w}(v)=\sum_{k=0}^{K} N_{k}^{p}(v) P_{i, k}^{w} \text { such that } T_{i}^{w}\left(\bar{v}_{k}\right)=C_{i, k}^{w} \quad \forall k=0, \cdots, K
$$

- We obtain a linear system

$$
\begin{aligned}
& \left(\begin{array}{ccc}
N_{0}^{p}\left(\bar{v}_{0}\right) & \cdots & N_{K}^{p}\left(\bar{v}_{0}\right) \\
\vdots & \ddots & \vdots \\
N_{0}^{p}\left(\bar{v}_{K}\right) & \cdots & N_{K}^{p}\left(\bar{v}_{K}\right)
\end{array}\right)\left(\begin{array}{c}
P_{i, 0}^{w} \\
\vdots \\
P_{i, K}^{w}
\end{array}\right)=\left(\begin{array}{c}
C_{i, 0}^{w} \\
\vdots \\
C_{i, K}^{w}
\end{array}\right) \\
& (A) \cdot\left(P_{i}^{w}\right)=\left(C_{i}^{w}\right)
\end{aligned}
$$

- The matrix A only depends on the nodal sequence $V^{\prime}=\left\{v_{i}^{\prime}\right\}$ and the values $\bar{V}=\left\{\bar{v}_{j}\right\}$
- For each series of CP, this system is to be solved 4 times (once for each coordinate x, y, z and $w), 4(n+1)$ times in total.
- Best choice : LU decomposition (once) + back substitution (4(n+1) times with each different right hand side)

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- Final surface

$$
\tilde{S}^{w}(u, v)=\sum_{i=0}^{n} \sum_{k=0}^{K} N_{i}^{p}(u) N_{k}^{q}(v) P_{i, k}^{w} \quad V^{\prime}=\left\{v_{i}^{\prime}\right\}, i=0, \cdots, s^{\prime}
$$

Computer Aided Design

NURBS surfaces

- Extrusion of the red curve along the green one

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Skinning
- Consists in generation of a « skin » supported by a series of curves $C_{k}(u), k=0 \cdots K$
- The curves C_{k} are interpolated
- The $C_{k}(u)$ so are isoparametrics of the skin $P(u, v)$ and are NURBS curves :

$$
C_{k}^{w}(u)=\sum_{i=0}^{n} N_{i}^{p}(u) C_{i, k}^{w} \quad U=\left\{u_{0}, \cdots, u_{r}\right\}
$$

- We assume they are compatible (same nodal sequence, same degree, same number of CPs)
- If it is not the case, use algorithms seen before to make them compatible (nodal insertion and degree elevation)

- LIÈGE Computer Aided Design université

 NURBS surfaces

 NURBS surfaces}

- Skinning
- The technique seen for building the profiled surface may be used
- However, the trajectory curve is not known
- We need to build a nodal sequence V, choose an order q and the values $\bar{V}=\left\{\bar{v}_{j}\right\}$ for which we interpolate the curves C_{k}.
- The number of curves C_{k} is imposed : it is $K+1$.

$$
\begin{aligned}
& V=\left\{v_{i}\right\}, \quad i=0, \cdots, s \\
& \bar{V}=\left\{\bar{v}_{j}\right\}, \quad j=0, \cdots, K
\end{aligned}
$$

- The explicit expression of the trajectory curve is, in fact, not needed!

- LIÈGE
 Computer Aided Design université

NURBS surfaces

- Skinning
- Determination of the degree q
- Arbitrary (user choice) but must be below $K+1$
- Determination of the values $\bar{V}=\left\{\bar{v}_{j}\right\}$
- $K+1$ (nb of curves to interpolate) is fixed.
- It is done by computing an approximation of the average arc length (averaged over the n control points of the curves to interpolate) :

$$
\begin{aligned}
& \bar{v}_{0}=0 ; \bar{v}_{K}=1 ; \\
& \bar{v}_{k}=\bar{v}_{k-1}+\sum_{i=0}^{n} \frac{\left|C_{i, k}^{w}-C_{i, k-1}^{w}\right|}{d_{i}}, k=1 \cdots K-1 \\
& d_{i}=\sum_{k=1}^{K}\left|C_{i, k}^{w}-C_{i, k-1}^{w}\right| \quad C_{i, 0}^{w} .
\end{aligned}
$$

- LIÈGE université

 Computer Aided Design

 Computer Aided Design

 NURBS surfaces

 NURBS surfaces}

- Skinning
- Determination of the nodal sequence
- The same technique of sliding average previously used...

$$
\bar{v}_{k}=\frac{1}{q} \sum_{i=1}^{q} v_{k+i}, \quad k=1, \cdots, K-1, \quad \bar{v}_{0}=v_{0} \quad \bar{v}_{K}=v_{s}
$$

, but it is "reversed" to get v_{k} in terms of \bar{v}_{k}

$$
v_{k+q}=\frac{1}{q} \sum_{i=k}^{k+q-1} \bar{v}_{i} ; k=1, \cdots, K-q ; v_{0}=\cdots=v_{q}=\bar{v}_{0} ; v_{K+1}=\cdots=v_{K+q+1}=\bar{v}_{K}
$$

- There can't be multiple nodes except at boundaries ...

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

NURBS surfaces

- Skinning
- We now have a nodal sequence, values of v for which the curves C_{k} are interpolated, and their control points.
- The remaining (determination of the coordinates of the CPs of the surface) is identical to the previous case of an extrusion along a defined curve.

- LIÈGE université

 Computer Aided Design

 Computer Aided Design}

Least Squares

- Least squares
- Suppose we have a huge number of 3D samples (from laser sampler), for an object. We want to reconstruct a shape, for which the description shall be both light and accurate. However, there are sampling errors, let's suppose those errors follow a normal distribution.

Least Squares

- 1D case (curves)
- Suppose we have N samples :
$e_{k}=\left(\begin{array}{l}x_{k} \\ y_{k} \\ z_{k}\end{array}\right), k=0 \ldots N-1$, with a standard deviation σ_{k}
One wants to approximate these with a curve that has n parameters, with $n \ll N$:
$C(u)=\sum_{i=0}^{n-1} P_{i} \cdot \varphi_{i}(u)$

- LIÈGE

 Computer Aided Design

 Computer Aided Design} université

Least Squares

- The discrepancy $\left\|C\left(u_{k}\right)-e_{k}\right\|$ between the curve and the samples is weighted by the inverse of the normal deviation
- if the latter is small, then the curve shall be closer to the sample
- We get : $\operatorname{err}_{k}=\left(\frac{1}{\sigma_{k}}\left\|C\left(u_{k}\right)-e_{k}\right\|\right)^{2}=\left(\frac{1}{\sigma_{k}}\left\|\sum_{i=0}^{n-1} P_{i} \cdot \varphi_{i}\left(u_{k}\right)-e_{k}\right\|\right)^{2}$
- We do not have the u_{k} 's yet. Those must be computed, for instance considering that the samples are equidistant in the parametric space, or this way: $u_{k}-u_{k-1}=\left\|e_{k}-e_{k-1}\right\|, k=1 \ldots N-1$ and $u_{0}=0$.
- Anyway; this sequence should be built before minimizing the error so that the problem remains linear.

Computer Aided Design

Least Squares

- One wishes to minimize the total error over all samples:

$$
\chi^{2}=\sum_{k=0}^{N-1} \frac{1}{\sigma_{k}^{2}}\left\|\sum_{i=0}^{n-1} P_{i} \cdot \varphi_{i}\left(u_{k}\right)-e_{k}\right\|^{2}
$$

with respect to the control points $P_{i}=\left(\begin{array}{l}p x_{i} \\ p y_{i} \\ p z_{i}\end{array}\right), \quad i=0 \cdots n-1$

- One can express the total error along each axis :
$\chi^{2}=\sum_{k=0}^{N-1} \frac{1}{\sigma_{k}^{2}}\left(\sum_{i=0}^{n} p x_{i} \cdot \varphi_{i}\left(u_{k}\right)-x_{k}\right)^{2}+$ terms in y and z

Least Squares

- One can put it in a matrix form :

$$
\begin{array}{rlr}
\begin{aligned}
\chi^{2} & =\left(\mathbf{J} \mathbf{P}_{\boldsymbol{x}}-\mathbf{E}_{x}{ }^{\mathbf{T}} \mathbf{W}\left(\mathbf{J} \mathbf{P}_{\boldsymbol{x}}-\mathbf{E}_{\boldsymbol{x}}\right)\right. \\
& +\left(\mathbf{J} \mathbf{P}_{y}-\mathbf{E}_{y}{ }^{\mathbf{T}} \mathbf{W}\left(\mathbf{J} \mathbf{P}_{y}-\mathbf{E}_{y}\right)\right. \\
& +\left(\mathbf{J} \mathbf{P}_{z}-\mathbf{E}_{z}\right)^{\mathbf{T}} \mathbf{W}\left(\mathbf{J} \mathbf{P}_{z}-\mathbf{E}_{z}\right)
\end{aligned} \\
\text { with } \mathbf{J}=\left(\begin{array}{ccc}
\varphi_{0}\left(u_{0}\right) & \cdots & \varphi_{n-1}\left(u_{0}\right) \\
\vdots \\
\varphi_{0}\left(u_{N-1}\right) & \cdots & \vdots \\
\varphi_{n-1}\left(u_{N-1}\right)
\end{array}\right) & \mathbf{P}_{x}=\left(\begin{array}{c}
p x_{0} \\
\vdots \\
p x_{n-1}
\end{array}\right) \\
\mathbf{W}=\left(\begin{array}{ccc}
1 / \sigma_{0}^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 / \sigma_{N-1}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
w_{0} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & w_{N-1}
\end{array}\right) & \mathbf{E}_{x}=\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{N-1}
\end{array}\right)
\end{array}
$$

LIÈGE université

 Computer Aided Design

 Computer Aided Design

 Least Squares

 Least Squares}

- Now one wants to minimize the error
- thus the differential of the error with respect to each P_{i} should vanish

$$
\begin{aligned}
& \text { e.g. } \frac{\partial \chi^{2}}{\partial x p_{i}}=\frac{\partial\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)^{\mathbf{T}} \mathbf{W}\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)}{\partial x p_{i}} \\
& =\frac{\partial\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)^{\mathbf{T}}}{\partial x p_{i}} \mathbf{W}\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)+\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)^{\mathbf{T}} \mathbf{W} \frac{\partial\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)}{\partial x p_{i}} \\
& =\frac{\partial \mathbf{P}_{x}^{\mathrm{T}}}{\partial x p_{i}} \mathbf{J}^{\mathrm{T}} \mathbf{W}\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{x}\right)+\left(\mathbf{J} \mathbf{P}_{x}-\mathbf{E}_{\boldsymbol{x}}\right)^{\mathbf{T}} \mathbf{W} \mathbf{J} \frac{\partial \mathbf{P}_{x}}{\partial x p_{i}} \\
& (0, \cdots, 1, \cdots, 0) \\
& =2\left[\mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J} \mathbf{P}_{\boldsymbol{x}}-\mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{x}\right]_{i^{1 /}} \text { line }=0
\end{aligned}
$$

Computer Aided Design

 Least Squares

 Least Squares}

- Overall, this should be written for each variable, thus :

$$
\begin{gathered}
\nabla_{P} \chi^{2}=\left(\begin{array}{l}
2 \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J} \mathbf{P}_{x}-2 \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{x} \\
2 \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J} \mathbf{P}_{y}-2 \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{y} \\
2 \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J} \mathbf{P}_{z}-2 \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{z}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right) \\
\left(\begin{array}{l}
\mathbf{P}_{x}=\left(\mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J}\right)^{-1} \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{x} \\
\mathbf{P}_{y}=\left(\mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J}\right)^{-1} \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{y} \\
\mathbf{P}_{z}=\left(\mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J}\right)^{-1} \mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{E}_{z}
\end{array}\right.
\end{gathered}
$$

- This system can be solved by an LU decomposition of $\mathbf{J}^{\mathrm{T}} \mathbf{W} \mathbf{J}$.

Computer Aided Design

Least Squares

- Sampling of a trunk, slice as a periodic B-Spline

- LIÈGE université
 Computer Aided Design

NURBS surfaces

- NURBS = open modelling system
- The following geometries cannot be represented exactly using NURBS :
- Profiles extruded along any trajectory (except straight lines and circles)
- Curve at a given distance of another curve
- Intersection of two NURBS surfaces
- Projection of a NURBS curve on a surface
- Many other cases ... however, by increasing the number of control points and/or the degree,

