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Computer Aided Design

NURBS surfaces

 Basic surfaces
 Biliear patch
 Ruled surfaces
 Extruded surfaces
 Coons patch

 Advanced surface algorithms
 Generalized revolution surfaces
 Profiled surfaces

 Geometric modelling and B-REP topology
 Open questions
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NURBS surfaces

 Bilinear patches
 Through 4 points, we want to build a surface 

supported by the 4 straight lines joining the points.

 The surface has the following expression :

 Hence the transformation
 into a B-spline :

S u , v=P001−u 1−v P011−uvP10 u 1−v P11 uv

P00 , P01 , P11 , P10

S u , v=∑
i=0

1

N i
1
P i0 1−vP i1 v

N 0
1
u =1−u

N 1
1
u=u }U={0 , 0 , 1 ,1}

N 0
1
v=1−v

N 1
1
v =v }V ={0 ,0 ,1 ,1}
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NURBS surfaces

 Bilinear square
 Bézier surface of degree 1 in each direction

 The weights w
i
 are equal to 1.

 The surface is polynomial 
(non-rational)

S w
u , v =∑

i=0

1

∑
j=0

1

N i
1
u N j

1
v P ij

w

U={0 ,0 ,1 ,1}
V={0 , 0 ,1 ,1}
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 Extruded surfaces
 Let C be a NURBS curve of degree p , of nodal 

sequence U, possibly closed, with n+1 control points:

 We want to extrude this curve
along a unit vector W, 
for a length d.

 What is the expression of the                               
resulting surface as a
NURBS ?

C w
u=∑

i=0

n

N i
p
uP i

w

U={u0 ,⋯, ur} (r+ 1 nodes with r=n+ p+ 1)

C u=∑
i=0

n

Ri
p
uP i

W

d
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NURBS surfaces

 Extruded surfaces

S (u , v)=∑
i=0

n

∑
j=0

m

Rij
p ,q
(u , v)P ij=∑

i=0

n

Ri
p
(u)(P i+vdW )

S w
(u , v)=∑

i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v)P ij

w
=∑

i=0

n

N i
p
(u)(P i

w
+vdW i

w
)

W i
w
=W w i

0 

S w
(u , v)=∑

i=0

n

N i
p
(u)((1−v)P i 0

w
+vPi 1

w
)

P i0
w
=P i

w

P i1
w
=P i

w
dW i

w

S w
(u , v)=∑

i=0

n

N i
p
(u)∑

j=0

1

N j
1
(v)P ij

w

V={0 ,0 ,1 ,1}

W

d

In 3D :

Using 
homog.
coord.
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NURBS surfaces

 Extruded surfaces

S w
(u ,v)=∑

i=0

n

∑
j=0

1

N i
p
(u)N j

1
(v)P ij

w

V={0 , 0 ,1 ,1}

P i0
w
=P i

w

P i1
w
=P i

w
dW i

w
U={u0 ,⋯ , ur}

P i0=P i w i0=w i

P i1=P idW wi1=w i

W i
w
=W w i

0 
S u , v=∑

i=0

n

∑
j=0

1

Rij
p ,1
u , v Pij
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NURBS surfaces

 Ruled surfaces
 We have two curves

 We want a ruled surface in the direction v, i.e a linear 
interpolation between C

0
(u) and C

1
(u).

C0
w
u=∑

i=0

n0

N i
p0 u Pi0

w C1
w
u=∑

i=0

n1

N i
p1uP i1

w

C0 u=∑
i=0

n0

Ri
p0u P i0 C1u=∑

i=0

n1

Ri
p1uP i1

U 0={u00 ,⋯ ,ur0} U 1={u01 ,⋯ , ur1}

C
0
(u)

C
1
(u)
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NURBS surfaces

 Ruled surfaces
 There are conditions on the curves  C

0
(u) and C

1
(u). 

 Same parametrization (compatible nodal sequences)

 The surface is then expressed simply

thus,

S w
u ,v =1−v C0

w
uv C1

w
u 

U 0=U 1=U
 
p0= p1= p } n0=n1=n ⇒ {

C0
w
u=∑

i=0

n

N i
p
u P i0

w

C 1
w
u =∑

i=0

n

N i
p
u P i1

w

S u , v=∑
i=0

n

∑
j=0

1

Rij
p ,1
u , v PijS w

(u , v)=∑
i=0

n

∑
j=0

1

N i
p
(u)N j

1
(v)P ij

w

S w
u , v=∑

j=0

1

N j
1
v C j

w
u 

Identical 
shape
functions
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NURBS surfaces

 What to do if conditions on the curves  C
0
(u) and C

1
(u) are 

not met ?
1 – Make sure that the parametric interval matches

 Affine transformation of one of the parameters (see chapter 3)

2 – Degree elevation towards the highest degree = max(p
0
,p

1
)

 Transformation into a set of Bézier curves by node saturation (chap. 4)
 Degree elevation for each Bézier curves with Forrest’s relations (chap. 3)
 Deletion of multiple nodes (chap. 4)

3 – Node insertion (chap. 4)
 Nodes of C

0
(u) not found in C

1
(u) are introduced in C

1
(u) and reciprocally

 These operations do not alter the geometry of the support 
curves

 Excepted the parametrization if point (1) is not satisfied
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NURBS surfaces

 Some examples of ruled surfaces

U={0 , 0 ,0 , 0 ,1 ,2 ,3 , 3 ,3 ,3} p=3

V={0 , 0 ,1 ,1} q=1
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NURBS surfaces

 Cylinders

U={0 , 0 ,0 ,1 , 1 , 2 , 2 ,3 ,3 ,3} p=2

U={−3 ,−2 ,−1 ,0 ,⋯ ,13 ,14 ,15} p=3

V={0 ,0 ,1 ,1} q=1
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NURBS surfaces

 Cones
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NURBS surfaces

 Hyperboloids
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NURBS surfaces

 Coons patches
 Can we represent a Coons patch exactly with a 

NURBS surface ?
 4 boundary curves
 Compatible ; i.e. NURBS :

- of same nodal sequence and same degree two by two

- nodal sequences yield curves with parameters contained between 
0 and 1 (for more simplicity)

- whose extremities are matching two by two
 Curves Cu of nodal sequence U, 

degree p, n  control points       for 
 Curves Cv of nodal sequence V, 

degree q, m control points      for

D C

A B

S(u,v)

C0
u

C1
u

C1
v

C0
v

C j
uP ij

u

C j
vP ij

v
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NURBS surfaces

 Coons patch = assembly of ruled surfaces

 If the boundary curves are compatible NURBS curves, 
we can represent S

1
, S

2
 and S

3
 as NURBS surfaces...

 Is the sum
a NURBS as well ? 

S 1u , v =1−v C 0
u
uvC1

u
u

S 2u , v =1−uC0
v
vuC1

v
v 

S 3u , v =1−u 1−v  Au 1−vBv 1−uDuvC

S u , v=S 1u , vS 2 u , v −S 3u , v
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NURBS surfaces

 The surfaces S
1
 et S

2
 are ruled surfaces :

S 1u , v =1−v C 0
u
uv C1

u
u

S 1u , v =∑
i=0

n

∑
j=0

1

N i
p
u N j

1
vP ij

1

V 1={0 , 0 ,1 ,1}
U 1=U

P ij
1
=P ij

u

S 2u , v =1−uC0
v
vuC1

v
v 

S 2u , v =∑
i=0

1

∑
j=0

m

N i
1
uN j

q
v Pij

2

V 2=V
U 2={0 ,0 ,1 ,1}

P ij
2
=P ji

v
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NURBS surfaces

 The surface S
3
 is a bilinear patch

S 3u , v =∑
i=0

1

∑
j=0

1

N i
1
uN j

1
v P ij

3

V={0 ,0 ,1 ,1}
U={0 , 0 ,1 ,1} P00

3
=A

P10
3
=B

P01
3
=D

P11
3
=C

D C

A

B

u
v
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NURBS surfaces

 The « sum » between several NURBS is possible (it is 
a linear combination ; cf. partition of unity & affine 
invariance)

 But ....

- No conformity of the surfaces (different # of CP)

- Different shape functions (because nodal sequences 
are different)

S u , v=S 1u , vS 2 u , v −S 3u , v

P ij =? P ij
1

 P ij
2

− P ij
3
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NURBS surfaces

 The « sum » between several NURBS is possible (it is 
a linear combination ; cf. partition of unity & affine 
invariance) – if they are similar.

 Nodal sequences must correspond.

S u , v=S 1u , vS 2 u , v −S 3u , v

V 3={0 ,0 , 1 ,1}
U 3={0 , 0 , 1 ,1}

V 1={0 , 0 , 1 ,1}
U 1=U

P ij P ij
1 Pij

2 P ij
3

V 2=V
U 2={0 ,0 ,1 ,1}

p1= p
q1=1

p2=1
q2=q

p3=1
q3=1

V *
=?

U *
=?

p*
=?

q*
=?
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NURBS surfaces

 The « sum » between several NURBS is possible (it is 
a linear combination ; cf. partition of unity & affine 
invariance) – if they are similar.

 degree elevation degree elevation degree elevation
→ q

1
=q → p

2
=p → p

3
=p , q

3
=q

 Then, node insertions
→ V

1
=V → U

2
=U → U

3
=U , V

3
=V

V 3={0 ,0 ,1 , 1}
U 3={0 ,0 ,1 ,1}

V 1={0 , 0 , 1 ,1}
U 1=U

V 2=V
U 2={0 ,0 ,1 ,1}

p1= p
q1=1

p2=1
q2=q

p3=1
q3=1

V *
=V

U *
=U

p*
= p

q*
=q
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NURBS surfaces

 Each operation (degree elevation or node insertion) 
adds control points so as to make “compatible” 
surfaces

 Finally, one can write 

S u , v=S 1u , vS 2 u , v −S 3u , v

V 1
*
=V

U 1
*
=U

P ij
*

= P ij
1*

 P ij
2*

− P ij
3*

p1
*
= p

q1
*
=q

V *
=V

U *
=U

p*
= p

q*
=q

p2
*
= p

q2
*
=q

p3
*
= p

q3
*
=q

V 2
*
=V

U 2
*
=U

V 3
*
=V

U 3
*
=U
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NURBS surfaces

 Degree elevation (in u or v) of a surface whose nodal 
sequence is that of a Bézier curve :

 Identical to the degree elevation ease of a Bézier curve
 Forrest relations written on the set of control points

 The nodal sequence is then augmented
 Node insertions in a B-Spline surface

 see chapter 5

 for j=0⋯q
Q0 j=P 0 j

for i=1⋯ p Q ij=P i−1, j+
( p+1−i)
( p+1)

(P ij− P i−1, j)

Q p+1, j=P pj
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NURBS surfaces
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NURBS surfaces

 Global modification of curves / surfaces
 Affine transformation of control points
 The affine invariance assures us that the resulting  

curve is what we want.
 Ex. Ellipse from a circle – scaling in a single direction.
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NURBS surfaces

(some) advanced algorithms
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NURBS surfaces

 Profiled surfaces

a) Generalization of the surface of revolution
 Each point of a generating curve (the profile curve ) follows a 

trajectory whose radius is defined by a second curve (the trajectory 
curve)

 We assume without loss of generality that P(u) is in the (xz) plane , 
and that T(v) is in the (xy) plane. The axis of revolution is along Oz.

S (u , v)

P (u)=(
x p
(u)
0

z p
(u))

T (v )=(
x t
(v)

y t
(v )
0

)
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NURBS surfaces

 Generalization of surfaces of revolution
 Lets transform T to polar coordinates : it corresponds to a simple 

rotation around z + a uniform scaling in x-y (not z) :

 The related transformation matrix is therefore :

 Let’s apply this to P :

P(u)=(
x p
(u)
0

z p
(u)) → S (u , v)=M (v)⋅P(u)=(

x p
(u)⋅r (v)cosθ(v)

x p
(u)⋅r (v)sin θ(v)

z p
(u) )=(

x p
(u)⋅x t

(v)

x p
(u)⋅y t

(v)

z p
(u) )

T (v)=(
x t
(v )

y t
(v)
0 )=(

r (v)cosθ(v)
r (v)sin θ(v)

0 )

M (v)=S (v)⋅R(v)=(
r 0 0
0 r 0
0 0 1)⋅(

cosθ −sin θ 0
sin θ cosθ 0

0 0 1)=(
r cosθ −r sin θ 0
r sinθ r cosθ 0

0 0 1)

T (v)

θ(v)

r (v)

x

y

1
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NURBS surfaces

 Generalization of surfaces of revolution
 The analytical expression of the surface is therefore simply: 

 Can we express it as a NURBS ?

S (u , v)=(
x p
(u)⋅x t

(v)

x p
(u)⋅y t

(v)

z p
(u) )

T v =
x t
v 

y t
v
0 

P u=
x p
u
0

z p
u 
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NURBS surfaces

 Generalization of surfaces of revolution
 New control points are located with reference to the z axis
 We have to deal with homogeneous coordinates 

C w
(u)=∑

i=0

n

N i
p
(u)C i

w

T w
v =∑

i=0

m

N i
q
v T i

w

U={u0 ,⋯ , ur}

V={v0 ,⋯ , v s}

S w
u , v =∑

i=0

n

∑
j=0

m

N i
p
u N j

q
vP ij

w
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NURBS surfaces

S (u ,v)=(
x p
(u)⋅x t

(v)

x p
(u)⋅y t

(v)
z p
(u) )≡(

x p
(u) x t

(v)w p
(u)wt

(v)

x p
(u) y t

(v)w p
(u)wt

(v)

z p
(u)w p

(u)wt
(v)

w p
(u)w t

(v)
)

C w
(u)=∑

i=0

n

N i
p
(u)C i

w
=(

x p
(u)w p

(u)
0

z p
(u)w p

(u)

w p
(u)

)=(
∑
i=0

n

N i
p
(u)x i

p w i
p

0

∑
i=0

n

N i
p
(u) z i

p wi
p

∑
i=0

n

N i
p
(u)w i

p )
T w

v =∑
j=0

m

N j
q
v T j

w
=

x t
v wt

v 
y t
v wt

v 
0

wt
v 

=
∑
j=0

m

N j
q
v  x j

t w j
t

∑
j=0

m

N j
q
v  y j

t w j
t

0

∑
j=0

m

N j
q
v w j

t 

x p
(u) x t

(v)w p
(u)wt

(v)

=∑
i=0

n

N i
p
(u) x i

p wi
p
⋅∑

j=0

m

N j
q
(v) x j

t w j
t

=∑
i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v) x i

p wi
p x j

t w j
t

Same for the other coordinates :

S w
(u , v)=∑

i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v)(

x i
p x j

t wi
p w j

t

x i
p y j

t wi
p w j

t

z i
p w i

p w j
t

wi
p w j

t )
(n+1).(m+1) control points

n+1 control points

m+1 control points

 Determination of the CPs
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NURBS surfaces

 Initial data

 The surface is expressed :

S w
u , v =∑

i=0

n

∑
j=0

m

N i
p
u N j

q
vP ij

w

C w
(u)=∑

i=0

n

N i
p
(u)C i

w

T w
v =∑

i=0

m

N i
q
v T i

w

U={u0 ,⋯ , ur} V={v0 ,⋯ , v s}

P ij
w
=

x i
p x j

t w i
p w j

t

x i
p y j

t w i
p w j

t

zi
p w i

p w j
t

w i
p w j

t 

C i
w
=(

x i
p w i

p

0
zi

p w i
p

w i
p ) T j

w
=

x j
t w j

t

y j
t w j

t

0
w j

t 

U={u0 ,⋯ , ur} V={v0 ,⋯ , v s}
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NURBS surfaces

L. Piegl « the NURBS book »
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NURBS surfaces

 Surface of revolution
 Let us have a curve (generating curve) that we want 

to revolve around an axis W , by a certain angle a .

S w
u , v =∑

j=0

m

N j
2
v Q j

w
uU={u0 ,⋯ , ur}

C w
u=∑

i=0

n

N i
p
uP i

w

m=2 if a<=2p/3 (1 segment, 3 CP)

m=4 if 2p/3<a<=4p/3 (2segments, 5 CP)

m=6 if 4p/3<a<=2p (3segments, 7 CP)

V={0 ,0 , 0 ,1 ,1 ,1}

V={0 ,0 ,0 ,1 ,1 , 2 , 2 ,2}

V={0 ,0 , 0 ,1 , 1 ,2 , 2 , 3 ,3 ,3}
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NURBS surfaces

 Circular arc of angle a <= 2p/3 (actually, <p)

P0
w

P1
w

P2
w

2r sin


2

r tan


2
sin



2

r cos


2

w=cos


2

w=1 w=1
P1

w
=

x1 cos/2
y1 cos/2
z1 cos/2
cos/2



P0
w
=

x0

y0

z0

1


P2
w
=

x2

y2

z2

1






38

Computer Aided Design

NURBS surfaces

 Without loss of generality, let's assume that
- a=2p
- A rotation axis coincident with the axis z
- Curve C lies in the plane xz :

 Computation of the points Q j
w
u

Q0
w
u=C w

u

x

y

w
j
=1

w
j
=1/2

Q0
w
u =

x u⋅w u
0⋅w u

z u⋅w u
w u

 Q1
w
u=

2 x cos/3⋅w⋅1/2
2 x sin/3⋅w⋅1/2

z⋅w⋅1/2
w⋅1 /2


Q2

w
u=

x cos 2/3⋅w
x sin 2/3⋅w

z⋅w
w

 etc...
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NURBS surfaces

 Definition as a NURBS

 The operation is possible because NURBS curves are 
invariant by affine transformations

S w
u , v =∑

j=0

m

N j
2
v Q j

w
u=∑

j=0

m

N j
2
v∑

i=0

n

N i
p
uPij

w

Rotation + scaling 
of the curve

Rotation + scaling of 
control points
of the curve

S w
u , v=∑

i=0

n

∑
j=0

m

N i
p
u N j

2
v Pij

w

=
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NURBS surfaces

 Example  -  revolution of 90° of a curve around the 
axis z :

 Calculation of circle's parameters
 Rotation / scaling of CP

x

z C w
u=∑

i=0

3

N i
3
uP i

w

U={0 , 0 ,0 , 0 , 1 ,1 ,1 ,1}

P0
w
=

1
0
0
1


P0
w

P1
wP2

w

P3
w

x

y

P1
w
=

2
0
1
1
 P2

w
=

1
0
1
1
 P3

w
=

1
0
2
1


w=cos 
2
=
2
2

w=1

S w
u , v =∑

i=0

3

∑
j=0

2

N i
3
uN j

2
v P ij

w V={0 ,0 ,0 ,1 ,1 ,1}
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NURBS surfaces

 Example  -  revolution of 90° of a curve around the 
axis z :

x

z

U={0 , 0 ,0 ,0 ,1 ,1 ,1 ,1}

P00
w
=

1
0
0
1


P0
w

P1
wP2

w

P3
w

x

y

P10
w
=

2
0
1
1
P20

w
=

1
0
1
1
P30

w
=

1
0
2
1


w=cos 
2
=
2
2

S w
u , v =∑

i=0

3

∑
j=0

2

N i
3
uN j

2
v P ij

w

V={0 , 0 ,0 ,1 ,1 ,1}

P02
w
=

0
1
0
1
P12

w
=

0
2
1
1
P22

w
=

0
1
1
1
P32

w
=(

0
1
2
1
)

P01
w
=

w
w
0
w
P11

w
=

2 w
2 w
w
w

P21
w
=

w
w
w
w
P31

w
=

w
w

2 w
w

 w=1
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NURBS surfaces
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NURBS surfaces

 An egg …
 Number of control points ?
 Degree of the curve
 Position of CP
 Weight of CP

x

z
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NURBS surfaces

 An egg …
 control points of the curve
 Revolution around z 

x

z

w=cos 
4
=
2
2

w=
22

2

w=1

w=cos


8
=
22

2

w=1

w=1

w=1
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NURBS surfaces

w=
2
2

w=1

w=
2
2

w=
1
2

w=
22

2

w=
222

4
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NURBS surfaces

 Profiled surfaces

b) profile with a controlled section obtained by 
sweeping

 same scheme :

- curved trajectory
- Section curve
- with an orientation matrix:

 The “analytic” surface is

 Two possibilities

1- M(v) is an identity (constant orientation)

2-  M(v) depends on the trajectory

In these two cases, M(v) does not correspond to a generalized 
rotation (no fixed axis of rotation)

S u , v =T vM v C u

C u

T v 

L. Piegl « the NURBS book »

M v 
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NURBS surfaces

 Case 1 : when M(v) is an identity : 
The section is simply moved without 
changing the orientation. 

S u , v=T v C u

T w
v 

Cw
u=∑

i=0

n

N i
p
uC i

w
=
∑
i=0

n

N i
p
u xi

c wi
c

⋮

∑
i=0

n

N i
p
uwi

c 
T w

v =∑
i=0

m

N i
q
vT i

w
=
∑
i=0

m

N i
q
u x i

t wi
t

⋮

∑
i=0

n

N i
q
uwi

t 

C w
u
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S u , v =T v C u

Cw
u=∑

i=0

n

N i
p
uC i

w
=
∑
i=0

n

N i
p
u x i

c wi
c

⋮

∑
i=0

n

N i
p
uwi

c  T w
v =∑

i=0

m

N j
q
v T i

w
=
∑
j=0

m

N i
q
v  x i

t wi
t

⋮

∑
j=0

n

N j
q
v wi

t 
x p
ux t

v =
∑
i=0

n

N i
p
u x i

c wi
c

∑
i=0

n

N i
p
uwi

c



∑
j=0

m

N j
q
v  x j

t w j
t

∑
j=0

m

N j
q
v w j

t

=

∑
i=0

n

N i
p
u x i

c wi
c
⋅∑

j=0

m

N j
q
v w j

t
∑

i=0

n

N i
p
uwi

c
⋅∑

j=0

m

N j
q
v  x j

t w j
t

∑
i=0

n

N i
p
uwi

c
⋅∑

j=0

m

N j
q
v w j

t

=

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v  x i

c wi
c w j

t
∑

i=0

n

∑
j=0

m

N i
p
u N j

q
v  x j

t wi
c w j

t

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v wi

c w j
t

=

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v  x i

c
x j

t
wi

c w j
t

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v wi

c w j
t

n.m homogeneous 
coordinates of control points

Associated weight



49

Computer Aided Design

NURBS surfaces

 Case 1 : M(v) is an identity : S u , v=T v C u 

T w
v 

S w
u , v =∑

i=0

n

∑
j=0

m

N i
p
uN j

q
vP ij

w

C w
u=∑

i=0

n

N i
p
uC i

w

T w
v =∑

i=0

m

N i
q
v T i

w

C i
w
=(

xi
c wi

c

z i
c wi

c

z i
c wi

c

wi
c ) T j

w
=

x j
t w j

t

y j
t w j

t

z j
t w j

t

w j
t  P ij

w
=

xi
c
x j

t
wi

c w j
t

 yi
c
 y j

t
wi

c w j
t

 zi
c
z j

t
wi

c w j
t

w i
c w j

t 

U={u0 ,⋯ , ur}

V={v0 ,⋯ , v s}

C w
u
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 Case 2 :  M(v) is imposed : 
Purpose : align the section along the trajectory
                curve

 Determination of M(v)
 Global coordinates : {O,X,Y,Z}
 Local coordinates along T(v) :

                             (tangent vector)

 Let            a vectorial function satisfying 
, that will be computed later. It will serve as a reference axis to set 
the orientation of the section curve along the trajectory :

T w
v 

S u , v =T vM v C u

x v =
T ' v
∣T ' v∣

ov =T v

B v  B v ⋅x v =0∀ v

{ov , x v , y v  , z v}

z v=
B v
∣B v∣ y v =z v ×x v

C w
u
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NURBS surfaces

 M(v) is a matrix that allows to transform the 
coordinates from                                     to  
(trivial)

 This problem is that M(v) does not lead to a NURBS 
surface in the general case, because the dependence 
in v is arbitrary.

 The surface that we want to build is therefore an  
approximation.

 How to determine the P
ij
 ?

{O , X ,Y , Z }{ov , x v , y v  , z v}

S u , v=T v M v C u 

~S w
(u , v)=∑

i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v )P ij

w
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NURBS surfaces

 Two techniques  (among others)
1) With the algebraic form
, generate a grid of          points exactly on S(u,v). By interpolation, 
determine positions of CP of a surface passing by these points (not 
described here)

 Disadvantage : no isovalues of     according to u or v is exactly on S

2) By interpolating many instances of the section (oriented 
appropriately by M) along the trajectory, using a technique known as 
« skinning » (described in the sequel)

 Allows to interpolate exactly the trajectory and the instances of the 
profile at nodes v

i
 – ( but the surface remains an approximation 

everywhere else)

S u , v =T v M v C u
n×m

S
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The technique described here :
 We place many instances of the section along the trajectory. These 

are oriented appropriately by M(v) .

 We then build a surface (skin) interpolating exactly these instances 

 The C
k
(u) are therefore isoparametrics of the skin P(u,v) for constant 

values of v , 
moreover, they are NURBS :

 Problems to solve :
 Computation of the position of points of interpolation along the trajectory 

curve (especially the vectorial function B(v) )
 Computation of the final surface

C k u , k=0⋯K

C k
w
(u)=∑

i=0

n

N i
p
(u)C i , k

w

U ={u0 ,⋯ , ur }
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NURBS surfaces

 The surface has the following form :

 We have to determine :
- the values of the parameter v for which curves C

k
 interpolate             

  . We shall call these values 

- the nodal sequence

- the control points         …

V={v0 ,⋯ , v s}

V̄={ v̄0 ,⋯ , v̄K }

~S w
(u , v)=∑

i=0

n

∑
k=0

K

N i
p
(u)N k

q
(v )P i , k

w

~S w
(u , v )

P i , k
w



55

Computer Aided Design

NURBS surfaces

 Computation of values     for which we interpolate, and 
deduction of the nodal sequence V 

 The number of nodes of V is s+1 
 The number of interpolated positions is K+1 (min. given by the user)
 The degree of the trajectory is q (imposed)

We want, if possible, to keep the nodal sequence of the trajectory ( same 
domain for v ).

If                     everything is OK.
If              , inserting nodes in the nodal sequence is needed
  →                   nodal insertions
If                    , add interpolated positions 
in such a way that 

s≤K+q
K+q−s+1

s > K+q+1
s=K+q+1

s=K+q+1

v̄ i
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NURBS surfaces

 Case where we must make nodal insertions
 We aim at an approximately regular repartition 
 The exact location of these insertions does not matter
 For instance, subdividing the longest nodal interval in two equal 

parts (and repeat this                        times ) is suitable.

 The position of the new control points of the trajectory T(v)  is not 
needed, because its nodal sequence is not modified !!! 

V ={0 ,0 ,0 ,1 ,2 , 4 ,8 ,10 ,10 ,10}

V '
={0 , 0 ,0 ,1 , 2 ,4 ,6 ,8 ,10 ,10 ,10}

m=3

V '
={0 ,0 , 0 ,1 , 2 ,3 , 4 , 6 , 8 , 10 ,10 ,10}

V '
={0 , 0 ,0 , 1 ,2 , 3 ,4 , 5 ,6 ,8 ,10 ,10 ,10}

Kq−s1
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NURBS surfaces

 Computation of the values of the parameter v for the 
interpolation, 

 The repartition depends on the nodal sequence
 For a node have a multiplicity of q, the curve interpolates one of the 

CPs, therefore this value must be part of  the 

A sliding average on q nodes (where q is the degree) is a good 
solution :

Example with q=2 : 9 control points and as many interpolation points

v̄ k=
1
q∑i=1

q

v k+i , k=1 ,⋯ , K−1 , v̄0=v 0 v̄ K=v
s

'

V '
={0 , 0 , 0 ,1 ,2 , 3 ,3 , 6 ,8 , 10 , 10 ,10}

V̄={0 ,
1
2

,
3
2

,
5
2

,3 ,
9
2

, 7 ,9 , 10}

V̄={v̄k} , k=0 ,⋯, K
v k

v̄ k
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NURBS surfaces

 Two things remain to be done 
1 : computation of positions of the instances of the profile curve, i.e. 
computations of positions of CPs of each instance C

k

2 : computation of the position of control points of curves passing 
through the control points of the instances
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NURBS surfaces

 Computation of the instances of the section (profile)

C k
w
(u)=∑

i=0

n

N i
p
(u)C i , k

w

C w
(u)=∑

i=0

n

N i
p
(u)C i

w

S u , v =T v M v C u

C i , k
w
=M w

(v̄ k )⋅Ci
w

x v k =
T ' v k 

∣T ' v k ∣

o v k =T v k  B vk 

{O , X , Y , Z }

z v k =
B vk 

∣B vk ∣

y v k = z v k ×x v k 

{ovk  , x v k  , y v k  , z vk }

C i
w
=(

x i wi

y i wi

z i wi

wi

) C i , k
w
=(

x i , k w i , k

y i , k wi , k

z i , k wi , k

wi , k

) M w
vk =

∣ ∣ ∣ ∣

x v k  y v k  z vk  o v k 

∣ ∣ ∣ ∣

0 0 0 1
⋅w v k 

given
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 Computation of
 Purpose : Have a similar orientation as the Frenet frame…

… by avoiding problems raised by the following definition (Frenet)

B v k 

B(v̄ k )=
T '

(v̄ k )×T ' '
( v̄ k)

|T '
(v̄ k )×T ' '

( v̄ k)|

B vk Three problems if           is related to Frenet frame:

1-           is not defined at places where T(v) is a 
straight line (locally) or at inflexion points

2-           abruptly changes its orientation before and 
after an inflexion point

3-  For three-dimensional trajectories, vectors 
obtained by the use of           can turn arbitrarily fast 
around the curve

B vk 

B vk 

Bvk 
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NURBS surfaces

 Computation of 
 We want a result like that :

B v k 
 Method of the normal 

projection*
 We are going to compute 

explicitly the values of      
    for each parameter

 Let             the increasing 
sequence of the 
parameter v . We 
compute 
by the following way :

B v k 

vk

* P. Stiltanen and C. Woodward, Normal orientation methods for 3D offset curves, sweep surfaces and 
skinning, Proc. Eurographics'92, 11(3), pp. C 449 – C 457, 1992.

v0⋯v K

B k=B ( v̄k )

T k=
T '
( v̄ k )

|T '
( v̄ k )|

b k=Bk−1−(Bk−1⋅T k )T k

Bk=
b k

|b k|
B0

Attention: avoid having 
Therefore K must such that the curve 
“turns” less than 90° between        and     ) 

T k // Bk−1

v k−1 v k
 is imposed 
by the user
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NURBS surfaces

 Case of periodic curves
 In general, 
 We can do the computation in two opposite directions:

 Then we set

BK≠B0

B̂0→ B̂K

B̄K→ B̄0

Bk=
B̄k+ B̂k

2
, k=1 ,⋯ , K−1
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NURBS surfaces

 Global interpolation on a curve
 We have interpolation points
 We have a nodal sequence : 
 We have the values of v for the interpolation :

 Now, we need to compute the expression of curves passing through 
the CP of the instances of the profile:

 The control points of these curves are the control points of the 
surface that is sought. Why ?

- because the expression of the surface is separable in u and v. See 
how we were able to compute the control points of an isoparametric on 
a B-Spline surface – see e.g. slide 36 of chapter 5

V '
={v i

'
} , i=0 ,⋯ , s'

V̄={v̄ j} , j=0 ,⋯ , K

T i
w
(v)=∑

k=0

K

N k
p
(v)P i ,k

w such that T i
w
(v̄ k )=C i , k

w
∀ k=0 ,⋯ , K

C i , k
w
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NURBS surfaces

 We obtain a linear system

 The matrix A only depends on the nodal sequence 
and the values 

 For each series of CP, this system is to be solved 4 times (once for 
each coordinate x,y,z and w) ,  4(n+1) times in total.

 Best choice : LU decomposition (once) + back substitution ( 4(n+1) times 
with each different right hand side)

T i
w
(v)=∑

k=0

K

N k
p
(v)P i ,k

w such that T i
w
(v̄ k )=C i , k

w
∀ k=0 ,⋯ , K

(
N 0

p
( v̄0) ⋯ N K

p
(v̄0)

⋮ ⋱ ⋮

N 0
p
( v̄K ) ⋯ N K

p
( v̄K)

)(
P i ,0

w

⋮

P i , K
w )=(

C i ,0
w

⋮

C i , K
w )

(A)⋅(P i
w
)=(C i

w
)

V '
={v i

'
}

V̄={v̄ j}
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 Final surface

S w
u , v =∑

i=0

n

∑
k=0

K

N i
p
uN k

q
vP i , k

w V '
={v i

'
} , i=0 ,⋯ , s'
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NURBS surfaces

 Extrusion of the red curve along the green one
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NURBS surfaces

 Skinning
 Consists in generation of a « skin » supported by a 

series of curves 
 The curves C

k
  are interpolated

 The C
k
(u) so are isoparametrics of the skin P(u,v)  and are NURBS 

curves :

 We assume they are compatible (same nodal sequence, same 
degree, same number of CPs)

 If it is not the case, use algorithms seen before to make them 
compatible (nodal insertion and degree elevation)

C k u  , k=0⋯K

C k
w
(u)=∑

i=0

n

N i
p
(u)C i , k

w U={u0 ,⋯ , ur }
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NURBS surfaces

 Skinning
 The technique seen for building the profiled surface 

may be used
 However, the trajectory curve is not known

 We need to build a nodal sequence V, choose an order q and the 
values              for which we interpolate the curves C

k
.

 The number of curves C
k
 is imposed : it is  K+1 .

 The explicit expression of the trajectory curve is, in fact, not 
needed !

V={v i} , i=0 ,⋯ , s

V̄={v̄ j} , j=0 ,⋯ , K

V̄={v̄ j}
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NURBS surfaces

 Skinning
 Determination of the degree q

 Arbitrary (user choice) but must be below K+1

 Determination of the values 
  K+1 (nb of curves to interpolate) is fixed.
 It is done by computing an approximation of the average arc length 

(averaged over the n control points of the curves to interpolate) :

V̄={v̄ j}

v̄0=0 ; v̄K=1 ;

v̄k=v̄k−1+∑
i=0

n |C i , k
w
−C i , k−1

w |
d i

, k=1⋯K−1

d i=∑
k=1

K

|C i , k
w
−C i , k−1

w | C i ,0
w

C i , K
w
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NURBS surfaces

 Skinning
 Determination of the nodal sequence

 The same technique of sliding average previously used...

, but it is “reversed” to get      in terms of 

 There can't be multiple nodes except at boundaries ...

v̄ k=
1
q∑i=1

q

v k+ i , k=1 ,⋯ , K−1 , v̄0=v0 v̄K=v s

vkq=
1
q ∑

i=k

kq−1

v i ; k=1 ,⋯ , K−q ; v0=⋯=vq=v0 ; v K1=⋯=vKq1=v K

v k v̄ k
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NURBS surfaces

 Skinning
 We now have a nodal sequence, values of v for which 

the curves C
k
 are interpolated, and their control points.

 The remaining (determination of the coordinates of the 
CPs of the surface) is identical to the previous case of 
an extrusion along a defined curve.
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Least Squares

 Least squares
 Suppose we have a huge number of 3D samples 

(from laser sampler), for an object.
We want to reconstruct a shape, for which the 
description shall be both light and accurate.
However, there are sampling errors, let's suppose 
those errors follow a normal distribution.
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Least Squares

 1D case (curves)
 Suppose we have N samples :

One wants to approximate these with a curve that has 
n parameters , with n << N :

ek=(
xk

yk

zk
) , k=0…N−1 ,  with a standard deviation σ k

C (u)=∑
i=0

n−1

P i⋅φi(u)
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Least Squares

 The discrepancy                      between the curve and 
the samples is weighted by the inverse of the normal 
deviation

 if the latter is small, then the curve shall be closer to the sample

 We get :

 We do not have the u
k 
's yet. Those must be 

computed, for instance considering that the samples 
are equidistant in the parametric space, or this way :

 Anyway; this sequence should be built before minimizing the error 
so that the problem remains linear.

∥C (uk )−ek∥

err k=(
1
σk

∥C (uk )−ek∥)
2

=( 1
σk

∥∑
i=0

n−1

Pi⋅φi (uk )−ek∥)
2

uk−uk−1=∥ek−ek−1∥ , k=1…N−1 and u0=0.
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Least Squares

 One wishes to minimize the total error over all 
samples :

with respect to the control points

 One can express the total error along each axis :

χ
2
=∑

k=0

N−1
1

σk
2∥∑

i=0

n−1

P i⋅φi(uk )−ek∥
2

P i=(
pxi

py i

pz i
) , i=0⋯n−1

χ
2
=∑

k=0

N−1
1

σk
2 (∑

i=0

n

pxi⋅φi (uk )−xk)
2

+  terms in y  and z
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Least Squares

 One can put it in a matrix form :

with 

χ
2
=(J Px−Ex )

TW (J Px−Ex )

+ (J P y−E y )
TW (J P y−E y )

+ (J Pz−Ez )
TW (J Pz−Ez )

J=(
φ0(u0) ⋯ φn−1(u0)

⋮ ⋮

φ0(uN−1) ⋯ φn−1(uN−1)
)

W=(
1 /σ0

2
⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1/σ N−1
2 )=(

w0 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ wN−1
)

Px=(
px0

⋮

pxn−1
)

Ex=(
x0

⋮

x N−1
)
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Least Squares

 Now one wants to minimize the error
 thus the differential of the error with respect to each P

i
 should vanish

e.g. ∂χ
2

∂ xpi

=
∂ (J Px−Ex )

TW (J Px−Ex )
∂ xpi

=
∂ (J Px−Ex )

T

∂ xpi

W (J Px−Ex )+ (J Px−Ex )
TW

∂ (JP x−Ex )
∂ xpi

=
∂P x

T

∂ xpi

JTW (JP x−Ex )+ (JP x−Ex )
TWJ

∂Px
∂ xpi

(0 ,⋯ ,1 ,⋯ ,0) (
0
⋮

1
⋮

0
)

=2 [JTWJPx−J
TWEx ]i th  line=0



78

Computer Aided Design

Least Squares

 Overall, this should be written for each variable, thus :

 This system can be solved by an LU decomposition of
 .

∇ P χ
2
=(

2 JTWJP x−2 JTWEx
2 JTWJP y−2 JTWE y
2 JTWJP z−2 JTWEz

)=(
0
0
0)

{
Px=(JTWJ )

−1
JTWEx

P y=(JTWJ )
−1
JTWE y

Pz=(JTWJ )
−1
JTWEz

JTWJ
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Least Squares

 Sampling of a trunk, slice as a periodic B-Spline
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NURBS surfaces

 NURBS = open modelling system
 The following geometries cannot be 

represented exactly using NURBS :
 Profiles extruded along any trajectory (except  

straight lines and circles)
 Curve at a given distance of another curve
 Intersection of two NURBS surfaces
 Projection of a NURBS curve on a surface
 Many other cases … however, by increasing 

the number of control points and/or the degree, 
convergence toward the exact geometry is 
usually very fast.


