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= Basic surfaces
= Biliear patch
= Ruled surfaces
= Extruded surfaces
= Coons patch

Advanced surface algorithms

= Generalized revolution surfaces
= Profiled surfaces

Geometric modelling and B-REP topology

Open questions
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= Bilinear patches

= Through 4 points, we want to build a surface
supported by the 4 straight lines joining the points.
POO’POI’PII’PIO
= The surface has the following expression :
S(u,v)=Py(1—u)(1—=v)+ P, (1—u)v+P,,u(l1—v)+P, uv
= Hence the transformatlon I

into a B-spline : ZN} (1=v)+P,v)
1 — 1 —

Ng’(”>_1 “lU=100,0,1,1]

Nl(”>:u
1 — 1 —

N(;(")_l "'w=[0,0,1,1)

N1<V>:V
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= Bilinear square

= Bézier surface of degree 1 in each direction

S"(u,v)=) . N;(u)N(v)P;

= The surface is polynomial
(non-rational)
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= Extruded surfaces

= Let C be a NURBS curve of degree p , of nodal
sequence U, possibly closed, with n+1 control points:

C'(w=2 N/ (P! Clu)=3 RI(u)P,

U={u,,-,u.} (r+1 nodes with r=n+ p+1)
= We want to extrude this curve v
along a unit vector W, d
for a length 4. e
= What is the expression of the }H\\‘<{
resulting surface as a
NURBS ?
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= Extruded surfaces

In3D: S(u,v)zzn(:)Zm:oRg’q(u,v)Py:Z:Rf(u)(pi+VdW) = WOW.
Using . )
homes- " )= X NI NG(v)Py= 3 N (u) (P +val
§"(u,v)=Y N2 (u)((1-v) Py+vP)) .
- P,=P’ d Ei;E
P =P '+dw’ Eﬁi
()=, N7 () 3 M) P Farr
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= Extruded surfaces
n 1
$"(u,v)=2, 2 NI (u)N'(v) P}
i=0 j=0
U:{uo"”’ur} PZ):P;V
P'=P

V:{0,0,l,l} +dWZW
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= Ruled surfaces

= We havg two curves
Cl(u)=Y. NP(u)P},  Cy(u)=2 N(u)P)
i=0

Col)=3 RMu)P,  C(w)=3 RI(u)P,

Uoz{uoo’”"”ro} U1:{”01""’”r1}
= We want a ruled surface in the direction v, i.e a linear
interpolation between C (v) and C (u).

C,(w)

C(w)

10
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= Ruled surfaces

= There are conditions on the curves C (u) and C, (u).

= Same parametrization (compatible nodal sequences) /vldentical
f n shape

UO:Ule\ CSV(M):ZN;D<U>P;Z functions

ny&=n,=n = ’ZO

Po=P\=D CY(u)=), N?(u)P}

J i=0
= The surface is then expresséd simply
S"(u,v)=(1-v)Cy(u)+vC(u)

Sw(u,v)zg)N;(v)C}v(u)

thUS, n 1 1 1
S"(u,v)=D. > N (u)NL(v) P S(u,v)= ZR;’(M,V)PU.H
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= What to do if conditions on the curves C (x) and C (u) are
not met ?

1 — Make sure that the parametric interval matches
= Affine transformation of one of the parameters (see chapter 3)
2 — Degree elevation towards the highest degree = max(p,.,p,)

= Transformation into a set of Bézier curves by node saturation (chap. 4)
= Degree elevation for each Bézier curves with Forrest’s relations (chap. 3)
= Deletion of multiple nodes (chap. 4)

3 — Node insertion (chap. 4)

= Nodes of C () not found in C () are introduced in C,(z) and reciprocally

= These operations do not alter the geometry of the support
curves

= Excepted the parametrization if point (1) is not satisfied

12
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= Some examples of ruled surfaces

U={0,0,0,0,1,2,3,3,3,3] p=3
y={0,0,1,1] g=1

13
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= Cylinders

i i, I
I L giy

Vg
LU ."?' i ,,f/ ™~
CTLLEEHHE Tk I I é"i | jq/’““\
e LT | F— e L] /.
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izt - TN
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I T L] ___-—4"’"" “_“-—-_\_‘ LT
e H T
L ' “H—K_._‘___‘H M~ T
e ARRREN N RRRRAES .;is__:iri\““’/
\v/

U=(-3,-2,—-1,0,---,13,14,15} p=3
U={0,0,0,1,1,2,2,3,3,3} p=2
y=(0,0,1,1] ¢=1

14
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Hyperboloids
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= Coons patches

= Can we represent a Coons patch exactly with a
NURBS surface ?

= 4 boundary curves
= Compatible ; i.e. NURBS :

- of same nodal sequence and same degree two by two

- nodal sequences yield curves with parameters contained between
0 and 1 (for more simplicity) c
1

- whose extremities are matching two by two D C

Curves C* of nodal sequence U,
degree p, n control points P for C’, o
Curves C' of nodal sequence 7/, C, 1
degree g, m control points P} for C:

A C" B 17

[
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= Coons patch = assembly of ruled surfaces

S (u,v)=(1-v)Cy(u)+vC(u)
S,(u,v)=(1-u)Cy(v)+uC|(v)
Si(u,v)=(1-u)(1=v)A+u(l—v)B+v(l—u) D+uvC

= |f the boundary curves are compatible NURBS curves,
we can represent S, S, and S, as NURBS surfaces...

* Isthe sum S(u,v)=S,(u,v)+S,(u,v)—S8;(u,v)
a NURBS as well ?

18
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= The surfaces S, et S, are ruled surfaces :

Si(u,v)=(1=v)Colu)+vCilu)  Sy{u,v)=(1-u)Cy(v)

=3 N7 (u) N

i=0 j=0

v)P; Sz(M,V)ZZiN;(u)Nq.(V)P%

19
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= The surface S, is a bilinear patch

20
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= The « sum » between several NURBS is possible (it is
a linear combination ; cf. partition of unity & affine
invariance)

S(u,v)=8(u,v)+S,(

/ \ \'\

P =?

7

= But ...
- No conformity of the surfaces (different # of CP)

- Different shape functions (because nodal sequences
are different)

21



s LIEGE Computer Aided Design
R université NURBS surfaces

= The « sum » between several NURBS is possible (it is
a linear combination ; cf. partition of unity & affine
invariance) — if they are similar

(u,v)+S,(
P,
U'=9 U1:U UQ:{0,0,1,1} U3:{O,O,1,1}
ay v.=(0,0,1,1] V,=V 7,={0,0,1,1)
p =2 pi=p p,=1 p;=1
g ="? q,=1 4,=4 q;=1

= Nodal sequences must correspond.

22



s LIEGE Computer Aided Design
R université NURBS surfaces

= The « sum » between several NURBS is possible (it is
a linear combination ; cf. partition of unity & affine
invariance) — if they are similar.

U=U U,=U U,={0,0,1,1}
V= V.,={0,0,1,1} V,=V
p= P\=p
q*: qlzl
= degree elevation degree elevation degree elevation
— 4,=q — P, P —P;P 4,74

= Then, node insertions /

— V= > U=U —U=U, V=V
23
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= Each operation (degree elevation or node insertion)
adds control points so as to make “compatible”
surfaces

= Finally, one can write

S(u,v)=S(u,v)+S,(u,v)=S(u,v)

P P, + P, - P,
U::U UEZU U*;:U U;;:U
Vi=v V.=V V.=V V.=V
p=p pi=p P=p py=p
q4=q 9,=q 4,=q 4:=q

24
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= Degree elevation (in u or v) of a surface whose nodal
sequence is that of a Bézier curve :

= |dentical to the degree elevation ease of a Bézier curve
= Forrest relations written on the set of control points

for j=0---¢q
QOj:POj
_ _ (p+1-i)
for i=1---p Q,.].—Pi_l,ﬁw(])ij_ Pi—l,j)
Qp+1,j:ij

= The nodal sequence is then augmented
= Node insertions in a B-Spline surface

= see chapter 5

25
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= Global modification of curves / surfaces

= Affine transformation of control points

= The affine invariance assures us that the resulting
curve is what we want.

= EXx. Ellipse from a circle — scaling in a single direction.

.
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(some) advanced algorithms

28



s LIEGE Computer Aided Design
R université NURBS surfaces

= Profiled surfaces

a) Generalization of the surface of revolution

= Each point of a generating curve (the profile curve ) follows a
trajectory whose radius is defined by a second curve (the trajectory

curve)

= We assume without loss of generality that P(u) is in the (xz) plane
and that 7(v) is in the (xy) plane. The axis of revolution is along Oz.

7 |
Plu)=| 0 .
z"(u)
x'(v)
T(v)=|y'(v)
0 S(u,v) 2
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= (Generalization of surfaces of revolution

= Lets transform T to polar coordinates : it corresponds to a simple
rotation around z + a uniform scaling in x-y (not z) :

70) x’((v; r((v))cos@((v)) yr(
v)=|y'(v)|[=] r(v)sin6(v
g 0 -

= The related transformation matrix is therefore :

r 0 0}(cosO@ —sinO® 0} [rcos®@ —rsinO O
M(v)=S(v)-R(v)=|0 » 0||sin6 cos® 0|=|rsin® rcosd 0
0 0 1 0 0 1 0 0 1
= Let’s apply this to P :
x"(u) x"(u)-r(v)cosO(v)| [x”(u)x'(v)
Plu)=| 0 > Su,v)=Mv)-P(u)=|x"(u)-r(v)sin0(v) |=|x"(u)-y'(v)
2’ (u) zP(u 2" (u)

30
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= Generalization of surfaces of revolution
= The analytical expression of the surface is therefore simply:
x?(u)-x'(v)
S(u,v)=|x"(u) y'(v)
2" (u)
= Can we express it as a NURBS ?
LU —
Plu)=| 0
z"(u)
x (v
p— yt V

31
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= (Generalization of surfaces of revolution

= New control points are located with reference to the z axis
= We have to deal with homogeneous coordinates

Sw(u,v)zzn: i N{(u)N%(v)P;

i=0 j=0

32
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xp(u)'xt(v) xp(u)xt(")wp(“)wt(") . )
Suv)=| () (v) 2| Y VI W (v)] e Determination of the CPs
e 2 (u)w () ' (v)
vl () (7)o ) ()
NIt =2 N7 ()l wl Y N () 2w
x(u)w?(u)| |=° 0 =0 j=0
w — ” p w__ 0 —| n — p q p. . pt_ 1
C =X N CT= () IS o) 2w ;;)Ni(u)zv,.(v)x,- wl xw
boLww |7
_ > NP (u)w? Same for the other coordinates :
n+1 control points i=0
iN?(v)x]w] x!xwiw,
xt(V>Wt(V) j;O w _ N p q xpythpW;
()= N 7= Y O )| L N, Sl EG H NN L
= 0 7=0 0 wiw'
RRERIF f
Nq
m+1 control points ;o i,

(n+1).(m+1) control points 33
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= |nitial data

C"(u)=> N (u)C” w “ w
=2 NI PW=S N[5
1= t ot
U={u,, ,u,l Y= pOp V={vy, v, 7=V
zZ; W; 0
w? w'

= The surface is expressed :

!
nom xpyt.wpwt.
S"(u,v)=2 2 NI () N§(v) Py Py=| 70
i=0 j=0 2 Wi W

t

U=(ug, =) V=[vg v, wiw,

34
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Profile curve

v "'[‘5

Trajectory curve

L. Piegl « the NURBS book
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= Surface of revolution

= Let us have a curve (generating curve) that we want
to revolve around an axis W, by a certain angle o .

m

S"(u,v)=2, N(v)0"(u)

=0
m=2 if a<=27/3 (1 segment, 3 CP)
yV=1{0,0,0,1,1,1}
m=4 if 27t/3<a<=4n/3 (2segments, 5 CP)
V=1{0,0,0,1,1,2,2,2}
m=>6 if 45t/3<0<=2n (3segments, 7 CP)

y={0,0,0,1,1,2,2,3,3,3] 36
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= Circular arc of angle a <= 2n/3 (actually, <m)

P(V)V: yO

Ftan > sin >
2 2
X;cos /2

y,cosa/2

z,cosa/2
7 COS — cosox/2

Xo

P;V: y2
Zy
1 37
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= Without loss of generality, let's assume that

- 0=2T

- A rotation axis coincident with the axis z
- Curve Cllies in the plane xz : Q) (u)=C"(u)

= Computation of the points Q" (u)

x(u)w(u)

(u): |
Qo (u)= () w (1)
w(u)

xcos2Tt/3-w

wr \_ | xsin21t/3-w
Qz(u)— Zow
w

0" (u)= 2xsintt/3-w-1/2

w=1/2
J /,I

2xcostt/3-w-1/2

zw-1/2
w-1/2

etc...
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= Definition as a NURBS
$"u,v)=2 N0} ()= 3 M) Y NP () P

Jj=0 j=0 i=0 T

— Rotation + scaling of
control points
of the curve

Rotation + scaling
of the curve

= The operation is possible because NURBS curves are
invariant by affine transformations

n

S ()= S NP () N (v) P

i=0 j=0

39



¢ LIEGE

< université

Computer Aided Design
NURBS surfaces

= Example - revolution of 90° of a curve around the

axis z:

pr=% Py

g

S

1
_—0 O =
—_—_ O N

y_ay_AOy_A

Py

X

= Calculation of circle's parameters

= Rotation / scaling of CP

3
i=0 j=0

Sw(u,v)zz Z N?(u)Ni.(v)P

C* (W)=Y N} (u) P}

U=(0,0,0,0,1,1,1,1)

o 2
W=C0S —=——
2 2

w=

V=1{0,0,0,1,1,1}

40
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= Example - revolution of 90° of a curve around the

axis z: §
‘ P3
1 2 1 1 | |
w w O wo__ O wo__ O j W\ w
Poo:8P10:1P20—1P30—2 & A
1 1 1 1 = py
0 0 0 B s
0 S v)=> S N (u) N2 (v) P"
PWZIPWZZPWZIPWZI | e S J y
02 0 12 1 22 1 32 o ) 0(_\/5
W=C0S —=—
1 1 1 1 2 2

2w

P =|2W Py = U=0,0,0,0,1,1,1,1)

W—
P31_

g
o=
|
T o= 2
S
EEE
ST S
s
5

w V=1{0,0,0,1,1,1} 4
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= Aneqgg ...

= Number of control points ?
= Degree of the curve
= Position of CP
= Weight of CP

43
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= Aneqgg ...
= control points of the curve N

= Revolution around z

TT
W=C0S —=——
4

44
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= Profiled surfaces

b) profile with a controlled section obtained by

sweeping ﬁ
= same scheme:
- curved trajectory
- Section curve ™

Section curve

- with an orientation matrix: A/ (v) C(u)

[
1

= The “analytic” surface is
S(u,v)=T(v)+M (v)C(u)

e ]
7

= Two possibilities

Trajectory curve

T(v)

T

1- M(v) is an identity (constant orientation)
2- M(v) depends on the trajectory

In these two cases, M(v) does not correspond to a generalized
rotation (no fixed axis of rotation) L. Piegl « the NURBS book$0
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= Case 1:when M(v)is anidentity : S(u,v)=T(v)+C(u)

The section is simply moved without
changing the orientation.

> NP (u)xtwt
Cw=Y Nwer=|
> N7
> WE(u)
W=y N
> Nofu)w

2

)

Section curve

C"(u),,

Trajectory curve

T (v)

47
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S =T (v)+ " N
(V=T )+ Clu) > NP (u)xw > N (v)xiw!
n i=0 Wi\ C w |70
Cw=Y N C= I"(v)=2 Ni()T/'=
i=0 " = n
>N (u)w Ni(v)w,
e l J=0
ZN?(u)xlwf ZN?(v)x]wj
x(u)+x' (v)=" —— n.m homogeneous
> N7 (u)w 3 NUv)w, coordinates of control points
i=0 pr ’ A
D N (u)x{wi- ) NU(w)w' + D) NP (w)wi- D, N(v)x'w!
_ =0 j=0 i=0 j=0

c t
(1) N (v)wiw) NZ(u) N (v)

Associated weidht
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= Case 1:M(v)isanidentity : S(u,v)=T(v)+C(u)

T"(v)

c ¢ t t c t c t

Xx; w; X, w; (x;+x°)w;w)

c t t c t c t
cr=|FiWil o pro| VW) pr— (yi+yj)wi W,
l chc J wat iy c t c

i Wi W <Zi+Zj)WiWJ

Wc t c t

I J W, w; 49
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= Case 2: M(v)isimposed : S(u,v)ZT(v)—I—A{(v)C(u)

Purpose : align the section along the trajectory )
curve

= Determination of M(v)

= Global coordinates : {0,X,Y,Z}
= Local coordinates along 7(v) :

lo(v), x(v), y(v),z(v)]

o(v)=T(v) N
x(v)z Tl(V) (tangent vector) ’ T"(v)
7' (v)

= Let B(v) a vectorial function satisfying B(v)-x(v)=0Vv
, that will be computed later. It will serve as a reference axis to set
the orientation of the section curve along the trajectory :

Z)=To )=z "
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M(v) is a matrix that allows to transform the
coordinates from {o(v),x(v),»(v),z(v)] to {0, XY, Z|
(trivial)

This problem is that M(v) does not lead to a NURBS

surface in the general case, because the dependence
In v is arbitrary.

The surface that we want to build is therefore an
approximation.

S(u,v)=T(v)+M(v)C (u)

()= Y N () N (v) P

i=0 j=0

How to determine the Pl-,- ?
51
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= Two techniques (among others)

1) With the algebraic form S(u,v)=T (v)+M (v)C (u)

, generate a grid of »nxm points exactly on S(u,v). By interpolation,
determine positions of CP of a surface passing by these points (not
described here)

= Disadvantage : no isovalues of S according to u or v is exactly on S

2) By interpolating many instances of the section (oriented
appropriately by M) along the trajectory, using a technique known as
« skinning » (described in the sequel)

= Allows to interpolate exactly the trajectory and the instances of the
profile at nodes v, — ( but the surface remains an approximation

everywhere else)

52
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The technique described here :

We place many instances of the section along the trajectory. These
are oriented appropriately by M(v) .

C.(u) , k=0---K
We then build a surface (skin) interpolating exactly these instances

The C (u) are therefore isoparametrics of the skin P(u,v) for constant

values of v, n
moreover, they are NURBS : C} (u)=)_ N”(u)C},
i=0

Problems to solve : U:|“0’ ”r] f

= Computation of the position of points of interpolation along the trajectory
curve (especially the vectorial function B(v) )

= Computation of the final surface

53



<

¢ LIEGE Computer Aided Design
université NURBS surfaces

= The surface has the following form :

n K
$"(u,v)=2, 2, NI (u)Ni(v) P},

i=0 k=0

= We have to determine :
- the values of the parameter v for which curves C, interpolate $"(u,v)
. We shall call these values V= v,, -, v
- the nodal sequence V:[VO, “',Vs}

- the control points P, -

54
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= Computation of values v, for which we interpolate, and
deduction of the nodal sequence V

= The number of nodes of Vis s+1
= The number of interpolated positions is K+1 (min. given by the user)
= The degree of the trajectory is ¢ (imposed)

We want, if possible, to keep the nodal sequence of the trajectory ( same
domain for v ).
If s=K+qg+1 everything is OK.
If s<K+gq inserting nodes in the nodal sequence is needed
— K+g—s+1nodal insertions
If s>K+qg+ 1, add interpolated positions
in such a way that s=K+¢g+1

55
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= Case where we must make nodal insertions

= We aim at an approximately regular repartition

= The exact location of these insertions does not matter

= For instance, subdividing the longest nodal interval in two equal
parts (and repeat this K+g—s+1 times) is suitable.

V:{O;O,O)112:4 8’ 10’ 10’10}

gl

V'=(0,0,0,1,2,4,6,8,10,10,10]

V'=(0,0,0, 1,2,¥,4,6,8, 10,10,10}

y

y'={0,0,0,1,2,3,4,5,6,8,10,10,10]

= The position of the new control points of the trajectory 7(v) is not
needed, because its nodal sequence is not modified !!!
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= Computation of the values of the parameter v for the
interpolation, V={v,} , k=0,---, K
= The repartition depends on the nodal sequence v,

= For a node have a multiplicity of ¢, the curve interpolates one of the
CPs, therefore this value must be part of the v,

A sliding average on g nodes (where ¢ is the degree) is a good
solution :

13 _ _
vk_gzvk"'l y k_l,...,K_l y vO_vO VK_VS'
i=1

Example with ¢g=2 : 9 control points and as many interpolation points
V'=(0,0,0,1,2,3,3,6,8,10,10,10]

V=10,
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= Two things remain to be done

1 : computation of positions of the instances of the profile curve, i.e.
computations of positions of CPs of each instance C,

2 : computation of the position of control points of curves passing
through the control points of the instances
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= Computation of the instances of the section (profile)

S(u,v)=T(v)+M(v)C(u) l0,X,Y,Z]
Cw(u>zzn:Np(u)Cw {0(_‘_’k):x(‘_ik),y<‘_’k)fz(‘_’k)}
i=0 o(v,)=T(v,) B(v,) given
n # x(v,)= (v, z(v,)= B(v,)
Cy(u)=Y N1 (u)CY, T C BB

X, W Xi Wik | | | |
w W, w | VixW W % v Vv v _
cr=|YiWi Cl.=|""* "0k gy (v,)= x(vi) y(V) z(v) o(vy) w(¥,)
Z,W Zi k Wik |
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= Computation of B(v,)
= Purpose : Have a similar orientation as the Frenet frame...
Three problems if B(v,)is related to Frenet frame:

1- B(V,) is not defined at places where T(v) is a
straight line (locally) or at inflexion points

2- B(v,) abruptly changes its orientation before and
after an inflexion point

3- For three-dimensional trajectories, vectors
y  obtained by the use of B(v,)can turn arbitrarily fast
around the curve

_ T )X ()
FCAREL]

B(vy)
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= Computation of B<‘_’k) * Method of the normal
projection*

= We want a rezsult like that : = We are going to compute

i explicitly the values of
for eactBparameter

= Let the increasing
sequence pf the
parameter v . We
compute

by the follBying Way :

Attention: avoid having T,// B, ,
Therefore K must such that the curve -« b
“turns” less than 90° between v,_,and Vv, )

=B~

bk

Bk:m B, is imposed
g by the user

* P. Stiltanen and C. Woodward, Normal orientation methods for 3D offset curves, sweep surfaces and
skinning, Proc. Eurographics'92, 11(3), pp. C 449 — C 457, 1992. 61
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= Case of periodic curves
= Ingeneral, B,#B,
= We can do the computation in two opposite directions:
B,» B,
B~ B,
= Then we set

B +B
Bk: k2 k
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= Global interpolation on a curve

We have interpolation points C;,

We have a nodal sequence : ¥V ={v,} , i=0,---,s

We have the values of v for the interpolation : 7={v | , ;=0,.--.K
|

otk x|}
/\l/\l/\

Now, we need to compute the expression of curves passing through
the CP of the instances of the profile:

K
T(v)=), N?(v) P}, suchthat T} (v,)=C}, Vk=0,---,K
k=0

The control points of these curves are the control points of the
surface that is sought. Why ?

- because the expression of the surface is separable in u and v. See
how we were able to compute the control points of an isoparametric on
a B-Spline surface — see e.g. slide 36 of chapter 5
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K
T (v)=) N?(v)P}, suchthat T} (v,)=C}, Vk=0,--- K
k=0

= We obtain a linear system

Nop(‘_’o) Ni(‘%) P.iMjO C.:'V,o

Nop(‘_’K) NZ(‘_}K) sz'v,K CZK

= The matrix 4 only depends on the nodal sequence 1 '={v}
and the values 17:{\7].}

= For each series of CP, this system is to be solved 4 times (once for
each coordinate x,y,z and w) , 4(n+1) times in total.

= Best choice : LU decomposition (once) + back substitution ( 4(n+1) times
with each different right hand side)
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= Final surface

()= N?(u) N (v) P",

i=0 k=0

V={v,} ,

i:O,"’,
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= Extrusion of the red curve along the green one
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= Skinning
= Consists in generation of a « skin » supported by a
series of curves C,(u) , k=0---K
= The curves C, are interpolated

= The C(u) so are isoparametrics of the skin P(u,v) and are NURBS
curves :

Clu)=X NI (u)Cly U=[ug o

7

= We assume they are compatible (same nodal sequence, same
degree, same number of CPs)

= |f it is not the case, use algorithms seen before to make them
compatible (nodal insertion and degree elevation)
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= Skinning

= The technique seen for building the profiled surface
may be used

= However, the trajectory curve is not known

= We need to build a nodal sequence V, choose an order ¢ and the
values ¥ ={v,|for which we interpolate the curves C..

= The number of curves C, is imposed : itis K+1 .
V:{Vl.} , 1=0,---,s

r=(v,) ., j=0,-K

= The explicit expression of the trajectory curve is, in fact, not
needed !
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= Skinning
= Determination of the degree ¢
= Arbitrary (user choice) but must be below K+1

* Determination of the values 7'={v |

= K+1 (nb of curves to interpolate) is fixed.

= |t is done by computing an approximation of the average arc length
(averaged over the n control points of the curves to interpolate) :
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= Skinning

= Determination of the nodal sequence

= The same technique of sliding average previously used...

q
vk:lka” , k=1, K—=1, vy=v, V=V,
q i=1

v e o oNe |y
|/\| N | N | N

, but it is “reversed” to get v interms of v,
k+q—1

1 _ _ _
Vk+q_g Z Vi k_l’“"K_q s Vo= "=V, =Vy v V= = Vg1~ Vi
i=k

= There can't be multiple nodes except at boundaries ...

RV VIV BV RN
\|/\|/Y\| ZAN | N | N 0
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= Skinning

= We now have a nodal sequence, values of v for which
the curves C, are interpolated, and their control points.

= The remaining (determination of the coordinates of the
CPs of the surface) is identical to the previous case of
an extrusion along a defined curve.
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= |Least squares

= Suppose we have a huge number of 3D samples
(from laser sampler), for an object.
We want to reconstruct a shape, for which the
description shall be both light and accurate.
However, there are sampling errors, let's suppose
those errors follow a normal distributiop
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= 1D case (curves)
= Suppose we have N samples :

Xk
e,=|y. | k=0...N—1, with a standard deviation o,

Zy

One wants to approximate these with a curve that has
n parameters , with n << N :

Clu)=Y, Pro
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= The discrepancy HC(uk)—ekH between the curve and
the samples is weighted by the inverse of the normal

deviation
= if the latter is small, then the curve shall be closer to the sample
1 2 1 n—1
= Weget: err,= G—HC(uk)—ekH |5 ZPi'(Pi(uk>—€k
k k|1i=0

= We do not have the u,'s yet. Those must be

computed, for instance considering that the samples
are equidistant in the parametric space, or this way :

,k=1...N—1 and u,=0.

= Anyway; this sequence should be built before minimizing the error
so that the problem remains linear.

uk_uk—leek_ek—l‘

[\
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= One wishes to minimize the total error over all
samples :

N-—1 1
=2 =

k:() Ok

2

n—1
Z Pi'(Pi(uk)_ek

i=0

PX;

with respect to the control points P,=| py.| , i=0--

PZ;

= One can express the total error along each axis :

N—-1 1
=2

k=0 Oy

n 2
Z px; @, (u,)—x,| + terms in y and z

i=0

n—1
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= One can put it in a matrix form :
x'=(JP.—E,'W[JP_ —E_|
+ (JPy_Ey)TW(JPy_Ey)

+JP.—-E|'W[JP -E,
cPo(uo) (Pn—1<uo>
with J= : :
(PO(MN—l) (pn—l(uN—l)
0o .- 1/(5%_1 0 - w,_,

PXy
P.=l
pxn—l
X0
E =
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= Now one wants to minimize the error
= thus the differential of the error with respect to each P, should vanish
2 _rw |T _
oo OX :8(JPx E, WJP,—E,
0 xp; 0 xp,
o(JP.—E,| v O|JP.—E,
= W(IJP —E +(JP —E | W
8xpl. ﬁxpi
aPT T T aP O
= ~J W(JP —E |[+(JP —E_ | WJ =
/axpi ( § X) ( § x) oxp, —»|:
1
(0,...,1,...’0) :
0

=0

th 1. —
i" line

=2/ J"WJP —J"WE_
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= Qverall, this should be written for each variable, thus :

2J'WIP —2J'WE_
2

VX' ={2J"WJIP,~2J"WE,

2J'WIP.—2J'WE,

1
= —

P =(J"WJ

X

P=J"WJ

y

P=(1"WJ

\ 4

= This system can be solved by an LU decomposition of
J'WI .
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= Sampling of a trunk, slice as a periodic B-Spline
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= NURBS = open modelling system

= The following geometries cannot be
represented exactly using NURBS :

= Profiles extruded along any trajectory (except
straight lines and circles) /

= Curve at a given distance of another curve
= |ntersection of two NURBS surfaces
= Projection of a NURBS curve on a surface

= Many other cases ... however, by increasing
the number of control points and/or the degree,
convergence toward the exact geometry is
usually very fast. 80



