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NURBS surfaces

 Basic surfaces
 Biliear patch
 Ruled surfaces
 Extruded surfaces
 Coons patch

 Advanced surface algorithms
 Generalized revolution surfaces
 Profiled surfaces

 Geometric modelling and B-REP topology
 Open questions
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 Bilinear patches
 Through 4 points, we want to build a surface 

supported by the 4 straight lines joining the points.

 The surface has the following expression :

 Hence the transformation
 into a B-spline :

S u , v=P001−u 1−v P011−uvP10 u 1−v P11 uv

P00 , P01 , P11 , P10

S u , v=∑
i=0

1

N i
1
P i0 1−vP i1 v

N 0
1
u =1−u

N 1
1
u=u }U={0 , 0 , 1 ,1}

N 0
1
v=1−v

N 1
1
v =v }V ={0 ,0 ,1 ,1}
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 Bilinear square
 Bézier surface of degree 1 in each direction

 The weights w
i
 are equal to 1.

 The surface is polynomial 
(non-rational)

S w
u , v =∑

i=0

1

∑
j=0

1

N i
1
u N j

1
v P ij

w

U={0 ,0 ,1 ,1}
V={0 , 0 ,1 ,1}
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 Extruded surfaces
 Let C be a NURBS curve of degree p , of nodal 

sequence U, possibly closed, with n+1 control points:

 We want to extrude this curve
along a unit vector W, 
for a length d.

 What is the expression of the                               
resulting surface as a
NURBS ?

C w
u=∑

i=0

n

N i
p
uP i

w

U={u0 ,⋯, ur} (r+ 1 nodes with r=n+ p+ 1)

C u=∑
i=0

n

Ri
p
uP i

W

d
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 Extruded surfaces

S (u , v)=∑
i=0

n

∑
j=0

m

Rij
p ,q
(u , v)P ij=∑

i=0

n

Ri
p
(u)(P i+vdW )

S w
(u , v)=∑

i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v)P ij

w
=∑

i=0

n

N i
p
(u)(P i

w
+vdW i

w
)

W i
w
=W w i

0 

S w
(u , v)=∑

i=0

n

N i
p
(u)((1−v)P i 0

w
+vPi 1

w
)

P i0
w
=P i

w

P i1
w
=P i

w
dW i

w

S w
(u , v)=∑

i=0

n

N i
p
(u)∑

j=0

1

N j
1
(v)P ij

w

V={0 ,0 ,1 ,1}

W

d

In 3D :

Using 
homog.
coord.
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 Extruded surfaces

S w
(u ,v)=∑

i=0

n

∑
j=0

1

N i
p
(u)N j

1
(v)P ij

w

V={0 , 0 ,1 ,1}

P i0
w
=P i

w

P i1
w
=P i

w
dW i

w
U={u0 ,⋯ , ur}

P i0=P i w i0=w i

P i1=P idW wi1=w i

W i
w
=W w i

0 
S u , v=∑

i=0

n

∑
j=0

1

Rij
p ,1
u , v Pij
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 Ruled surfaces
 We have two curves

 We want a ruled surface in the direction v, i.e a linear 
interpolation between C

0
(u) and C

1
(u).

C0
w
u=∑

i=0

n0

N i
p0 u Pi0

w C1
w
u=∑

i=0

n1

N i
p1uP i1

w

C0 u=∑
i=0

n0

Ri
p0u P i0 C1u=∑

i=0

n1

Ri
p1uP i1

U 0={u00 ,⋯ ,ur0} U 1={u01 ,⋯ , ur1}

C
0
(u)

C
1
(u)
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 Ruled surfaces
 There are conditions on the curves  C

0
(u) and C

1
(u). 

 Same parametrization (compatible nodal sequences)

 The surface is then expressed simply

thus,

S w
u ,v =1−v C0

w
uv C1

w
u 

U 0=U 1=U
 
p0= p1= p } n0=n1=n ⇒ {

C0
w
u=∑

i=0

n

N i
p
u P i0

w

C 1
w
u =∑

i=0

n

N i
p
u P i1

w

S u , v=∑
i=0

n

∑
j=0

1

Rij
p ,1
u , v PijS w

(u , v)=∑
i=0

n

∑
j=0

1

N i
p
(u)N j

1
(v)P ij

w

S w
u , v=∑

j=0

1

N j
1
v C j

w
u 

Identical 
shape
functions
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 What to do if conditions on the curves  C
0
(u) and C

1
(u) are 

not met ?
1 – Make sure that the parametric interval matches

 Affine transformation of one of the parameters (see chapter 3)

2 – Degree elevation towards the highest degree = max(p
0
,p

1
)

 Transformation into a set of Bézier curves by node saturation (chap. 4)
 Degree elevation for each Bézier curves with Forrest’s relations (chap. 3)
 Deletion of multiple nodes (chap. 4)

3 – Node insertion (chap. 4)
 Nodes of C

0
(u) not found in C

1
(u) are introduced in C

1
(u) and reciprocally

 These operations do not alter the geometry of the support 
curves

 Excepted the parametrization if point (1) is not satisfied
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 Some examples of ruled surfaces

U={0 , 0 ,0 , 0 ,1 ,2 ,3 , 3 ,3 ,3} p=3

V={0 , 0 ,1 ,1} q=1
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 Cylinders

U={0 , 0 ,0 ,1 , 1 , 2 , 2 ,3 ,3 ,3} p=2

U={−3 ,−2 ,−1 ,0 ,⋯ ,13 ,14 ,15} p=3

V={0 ,0 ,1 ,1} q=1
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 Cones
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 Hyperboloids
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 Coons patches
 Can we represent a Coons patch exactly with a 

NURBS surface ?
 4 boundary curves
 Compatible ; i.e. NURBS :

- of same nodal sequence and same degree two by two

- nodal sequences yield curves with parameters contained between 
0 and 1 (for more simplicity)

- whose extremities are matching two by two
 Curves Cu of nodal sequence U, 

degree p, n  control points       for 
 Curves Cv of nodal sequence V, 

degree q, m control points      for

D C

A B

S(u,v)

C0
u

C1
u

C1
v

C0
v

C j
uP ij

u

C j
vP ij

v
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 Coons patch = assembly of ruled surfaces

 If the boundary curves are compatible NURBS curves, 
we can represent S

1
, S

2
 and S

3
 as NURBS surfaces...

 Is the sum
a NURBS as well ? 

S 1u , v =1−v C 0
u
uvC1

u
u

S 2u , v =1−uC0
v
vuC1

v
v 

S 3u , v =1−u 1−v  Au 1−vBv 1−uDuvC

S u , v=S 1u , vS 2 u , v −S 3u , v
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 The surfaces S
1
 et S

2
 are ruled surfaces :

S 1u , v =1−v C 0
u
uv C1

u
u

S 1u , v =∑
i=0

n

∑
j=0

1

N i
p
u N j

1
vP ij

1

V 1={0 , 0 ,1 ,1}
U 1=U

P ij
1
=P ij

u

S 2u , v =1−uC0
v
vuC1

v
v 

S 2u , v =∑
i=0

1

∑
j=0

m

N i
1
uN j

q
v Pij

2

V 2=V
U 2={0 ,0 ,1 ,1}

P ij
2
=P ji

v
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 The surface S
3
 is a bilinear patch

S 3u , v =∑
i=0

1

∑
j=0

1

N i
1
uN j

1
v P ij

3

V={0 ,0 ,1 ,1}
U={0 , 0 ,1 ,1} P00

3
=A

P10
3
=B

P01
3
=D

P11
3
=C

D C

A

B

u
v
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 The « sum » between several NURBS is possible (it is 
a linear combination ; cf. partition of unity & affine 
invariance)

 But ....

- No conformity of the surfaces (different # of CP)

- Different shape functions (because nodal sequences 
are different)

S u , v=S 1u , vS 2 u , v −S 3u , v

P ij =? P ij
1

 P ij
2

− P ij
3
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 The « sum » between several NURBS is possible (it is 
a linear combination ; cf. partition of unity & affine 
invariance) – if they are similar.

 Nodal sequences must correspond.

S u , v=S 1u , vS 2 u , v −S 3u , v

V 3={0 ,0 , 1 ,1}
U 3={0 , 0 , 1 ,1}

V 1={0 , 0 , 1 ,1}
U 1=U

P ij P ij
1 Pij

2 P ij
3

V 2=V
U 2={0 ,0 ,1 ,1}

p1= p
q1=1

p2=1
q2=q

p3=1
q3=1

V *
=?

U *
=?

p*
=?

q*
=?
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 The « sum » between several NURBS is possible (it is 
a linear combination ; cf. partition of unity & affine 
invariance) – if they are similar.

 degree elevation degree elevation degree elevation
→ q

1
=q → p

2
=p → p

3
=p , q

3
=q

 Then, node insertions
→ V

1
=V → U

2
=U → U

3
=U , V

3
=V

V 3={0 ,0 ,1 , 1}
U 3={0 ,0 ,1 ,1}

V 1={0 , 0 , 1 ,1}
U 1=U

V 2=V
U 2={0 ,0 ,1 ,1}

p1= p
q1=1

p2=1
q2=q

p3=1
q3=1

V *
=V

U *
=U

p*
= p

q*
=q
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 Each operation (degree elevation or node insertion) 
adds control points so as to make “compatible” 
surfaces

 Finally, one can write 

S u , v=S 1u , vS 2 u , v −S 3u , v

V 1
*
=V

U 1
*
=U

P ij
*

= P ij
1*

 P ij
2*

− P ij
3*

p1
*
= p

q1
*
=q

V *
=V

U *
=U

p*
= p

q*
=q

p2
*
= p

q2
*
=q

p3
*
= p

q3
*
=q

V 2
*
=V

U 2
*
=U

V 3
*
=V

U 3
*
=U
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 Degree elevation (in u or v) of a surface whose nodal 
sequence is that of a Bézier curve :

 Identical to the degree elevation ease of a Bézier curve
 Forrest relations written on the set of control points

 The nodal sequence is then augmented
 Node insertions in a B-Spline surface

 see chapter 5

 for j=0⋯q
Q0 j=P 0 j

for i=1⋯ p Q ij=P i−1, j+
( p+1−i)
( p+1)

(P ij− P i−1, j)

Q p+1, j=P pj
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 Global modification of curves / surfaces
 Affine transformation of control points
 The affine invariance assures us that the resulting  

curve is what we want.
 Ex. Ellipse from a circle – scaling in a single direction.
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(some) advanced algorithms
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 Profiled surfaces

a) Generalization of the surface of revolution
 Each point of a generating curve (the profile curve ) follows a 

trajectory whose radius is defined by a second curve (the trajectory 
curve)

 We assume without loss of generality that P(u) is in the (xz) plane , 
and that T(v) is in the (xy) plane. The axis of revolution is along Oz.

S (u , v)

P (u)=(
x p
(u)
0

z p
(u))

T (v )=(
x t
(v)

y t
(v )
0

)
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 Generalization of surfaces of revolution
 Lets transform T to polar coordinates : it corresponds to a simple 

rotation around z + a uniform scaling in x-y (not z) :

 The related transformation matrix is therefore :

 Let’s apply this to P :

P(u)=(
x p
(u)
0

z p
(u)) → S (u , v)=M (v)⋅P(u)=(

x p
(u)⋅r (v)cosθ(v)

x p
(u)⋅r (v)sin θ(v)

z p
(u) )=(

x p
(u)⋅x t

(v)

x p
(u)⋅y t

(v)

z p
(u) )

T (v)=(
x t
(v )

y t
(v)
0 )=(

r (v)cosθ(v)
r (v)sin θ(v)

0 )

M (v)=S (v)⋅R(v)=(
r 0 0
0 r 0
0 0 1)⋅(

cosθ −sin θ 0
sin θ cosθ 0

0 0 1)=(
r cosθ −r sin θ 0
r sinθ r cosθ 0

0 0 1)

T (v)

θ(v)

r (v)

x

y

1
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 Generalization of surfaces of revolution
 The analytical expression of the surface is therefore simply: 

 Can we express it as a NURBS ?

S (u , v)=(
x p
(u)⋅x t

(v)

x p
(u)⋅y t

(v)

z p
(u) )

T v =
x t
v 

y t
v
0 

P u=
x p
u
0

z p
u 
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 Generalization of surfaces of revolution
 New control points are located with reference to the z axis
 We have to deal with homogeneous coordinates 

C w
(u)=∑

i=0

n

N i
p
(u)C i

w

T w
v =∑

i=0

m

N i
q
v T i

w

U={u0 ,⋯ , ur}

V={v0 ,⋯ , v s}

S w
u , v =∑

i=0

n

∑
j=0

m

N i
p
u N j

q
vP ij

w
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S (u ,v)=(
x p
(u)⋅x t

(v)

x p
(u)⋅y t

(v)
z p
(u) )≡(

x p
(u) x t

(v)w p
(u)wt

(v)

x p
(u) y t

(v)w p
(u)wt

(v)

z p
(u)w p

(u)wt
(v)

w p
(u)w t

(v)
)

C w
(u)=∑

i=0

n

N i
p
(u)C i

w
=(

x p
(u)w p

(u)
0

z p
(u)w p

(u)

w p
(u)

)=(
∑
i=0

n

N i
p
(u)x i

p w i
p

0

∑
i=0

n

N i
p
(u) z i

p wi
p

∑
i=0

n

N i
p
(u)w i

p )
T w

v =∑
j=0

m

N j
q
v T j

w
=

x t
v wt

v 
y t
v wt

v 
0

wt
v 

=
∑
j=0

m

N j
q
v  x j

t w j
t

∑
j=0

m

N j
q
v  y j

t w j
t

0

∑
j=0

m

N j
q
v w j

t 

x p
(u) x t

(v)w p
(u)wt

(v)

=∑
i=0

n

N i
p
(u) x i

p wi
p
⋅∑

j=0

m

N j
q
(v) x j

t w j
t

=∑
i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v) x i

p wi
p x j

t w j
t

Same for the other coordinates :

S w
(u , v)=∑

i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v)(

x i
p x j

t wi
p w j

t

x i
p y j

t wi
p w j

t

z i
p w i

p w j
t

wi
p w j

t )
(n+1).(m+1) control points

n+1 control points

m+1 control points

 Determination of the CPs
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 Initial data

 The surface is expressed :

S w
u , v =∑

i=0

n

∑
j=0

m

N i
p
u N j

q
vP ij

w

C w
(u)=∑

i=0

n

N i
p
(u)C i

w

T w
v =∑

i=0

m

N i
q
v T i

w

U={u0 ,⋯ , ur} V={v0 ,⋯ , v s}

P ij
w
=

x i
p x j

t w i
p w j

t

x i
p y j

t w i
p w j

t

zi
p w i

p w j
t

w i
p w j

t 

C i
w
=(

x i
p w i

p

0
zi

p w i
p

w i
p ) T j

w
=

x j
t w j

t

y j
t w j

t

0
w j

t 

U={u0 ,⋯ , ur} V={v0 ,⋯ , v s}
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L. Piegl « the NURBS book »
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 Surface of revolution
 Let us have a curve (generating curve) that we want 

to revolve around an axis W , by a certain angle a .

S w
u , v =∑

j=0

m

N j
2
v Q j

w
uU={u0 ,⋯ , ur}

C w
u=∑

i=0

n

N i
p
uP i

w

m=2 if a<=2p/3 (1 segment, 3 CP)

m=4 if 2p/3<a<=4p/3 (2segments, 5 CP)

m=6 if 4p/3<a<=2p (3segments, 7 CP)

V={0 ,0 , 0 ,1 ,1 ,1}

V={0 ,0 ,0 ,1 ,1 , 2 , 2 ,2}

V={0 ,0 , 0 ,1 , 1 ,2 , 2 , 3 ,3 ,3}
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 Circular arc of angle a <= 2p/3 (actually, <p)

P0
w

P1
w

P2
w

2r sin


2

r tan


2
sin



2

r cos


2

w=cos


2

w=1 w=1
P1

w
=

x1 cos/2
y1 cos/2
z1 cos/2
cos/2



P0
w
=

x0

y0

z0

1


P2
w
=

x2

y2

z2

1
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 Without loss of generality, let's assume that
- a=2p
- A rotation axis coincident with the axis z
- Curve C lies in the plane xz :

 Computation of the points Q j
w
u

Q0
w
u=C w

u

x

y

w
j
=1

w
j
=1/2

Q0
w
u =

x u⋅w u
0⋅w u

z u⋅w u
w u

 Q1
w
u=

2 x cos/3⋅w⋅1/2
2 x sin/3⋅w⋅1/2

z⋅w⋅1/2
w⋅1 /2


Q2

w
u=

x cos 2/3⋅w
x sin 2/3⋅w

z⋅w
w

 etc...
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 Definition as a NURBS

 The operation is possible because NURBS curves are 
invariant by affine transformations

S w
u , v =∑

j=0

m

N j
2
v Q j

w
u=∑

j=0

m

N j
2
v∑

i=0

n

N i
p
uPij

w

Rotation + scaling 
of the curve

Rotation + scaling of 
control points
of the curve

S w
u , v=∑

i=0

n

∑
j=0

m

N i
p
u N j

2
v Pij

w

=
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 Example  -  revolution of 90° of a curve around the 
axis z :

 Calculation of circle's parameters
 Rotation / scaling of CP

x

z C w
u=∑

i=0

3

N i
3
uP i

w

U={0 , 0 ,0 , 0 , 1 ,1 ,1 ,1}

P0
w
=

1
0
0
1


P0
w

P1
wP2

w

P3
w

x

y

P1
w
=

2
0
1
1
 P2

w
=

1
0
1
1
 P3

w
=

1
0
2
1


w=cos 
2
=
2
2

w=1

S w
u , v =∑

i=0

3

∑
j=0

2

N i
3
uN j

2
v P ij

w V={0 ,0 ,0 ,1 ,1 ,1}
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 Example  -  revolution of 90° of a curve around the 
axis z :

x

z

U={0 , 0 ,0 ,0 ,1 ,1 ,1 ,1}

P00
w
=

1
0
0
1


P0
w

P1
wP2

w

P3
w

x

y

P10
w
=

2
0
1
1
P20

w
=

1
0
1
1
P30

w
=

1
0
2
1


w=cos 
2
=
2
2

S w
u , v =∑

i=0

3

∑
j=0

2

N i
3
uN j

2
v P ij

w

V={0 , 0 ,0 ,1 ,1 ,1}

P02
w
=

0
1
0
1
P12

w
=

0
2
1
1
P22

w
=

0
1
1
1
P32

w
=(

0
1
2
1
)

P01
w
=

w
w
0
w
P11

w
=

2 w
2 w
w
w

P21
w
=

w
w
w
w
P31

w
=

w
w

2 w
w

 w=1
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 An egg …
 Number of control points ?
 Degree of the curve
 Position of CP
 Weight of CP

x

z
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 An egg …
 control points of the curve
 Revolution around z 

x

z

w=cos 
4
=
2
2

w=
22

2

w=1

w=cos


8
=
22

2

w=1

w=1

w=1
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w=
2
2

w=1

w=
2
2

w=
1
2

w=
22

2

w=
222

4
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 Profiled surfaces

b) profile with a controlled section obtained by 
sweeping

 same scheme :

- curved trajectory
- Section curve
- with an orientation matrix:

 The “analytic” surface is

 Two possibilities

1- M(v) is an identity (constant orientation)

2-  M(v) depends on the trajectory

In these two cases, M(v) does not correspond to a generalized 
rotation (no fixed axis of rotation)

S u , v =T vM v C u

C u

T v 

L. Piegl « the NURBS book »

M v 
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 Case 1 : when M(v) is an identity : 
The section is simply moved without 
changing the orientation. 

S u , v=T v C u

T w
v 

Cw
u=∑

i=0

n

N i
p
uC i

w
=
∑
i=0

n

N i
p
u xi

c wi
c

⋮

∑
i=0

n

N i
p
uwi

c 
T w

v =∑
i=0

m

N i
q
vT i

w
=
∑
i=0

m

N i
q
u x i

t wi
t

⋮

∑
i=0

n

N i
q
uwi

t 

C w
u



48

Computer Aided Design

NURBS surfaces

 
S u , v =T v C u

Cw
u=∑

i=0

n

N i
p
uC i

w
=
∑
i=0

n

N i
p
u x i

c wi
c

⋮

∑
i=0

n

N i
p
uwi

c  T w
v =∑

i=0

m

N j
q
v T i

w
=
∑
j=0

m

N i
q
v  x i

t wi
t

⋮

∑
j=0

n

N j
q
v wi

t 
x p
ux t

v =
∑
i=0

n

N i
p
u x i

c wi
c

∑
i=0

n

N i
p
uwi

c



∑
j=0

m

N j
q
v  x j

t w j
t

∑
j=0

m

N j
q
v w j

t

=

∑
i=0

n

N i
p
u x i

c wi
c
⋅∑

j=0

m

N j
q
v w j

t
∑

i=0

n

N i
p
uwi

c
⋅∑

j=0

m

N j
q
v  x j

t w j
t

∑
i=0

n

N i
p
uwi

c
⋅∑

j=0

m

N j
q
v w j

t

=

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v  x i

c wi
c w j

t
∑

i=0

n

∑
j=0

m

N i
p
u N j

q
v  x j

t wi
c w j

t

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v wi

c w j
t

=

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v  x i

c
x j

t
wi

c w j
t

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v wi

c w j
t

n.m homogeneous 
coordinates of control points

Associated weight
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 Case 1 : M(v) is an identity : S u , v=T v C u 

T w
v 

S w
u , v =∑

i=0

n

∑
j=0

m

N i
p
uN j

q
vP ij

w

C w
u=∑

i=0

n

N i
p
uC i

w

T w
v =∑

i=0

m

N i
q
v T i

w

C i
w
=(

xi
c wi

c

z i
c wi

c

z i
c wi

c

wi
c ) T j

w
=

x j
t w j

t

y j
t w j

t

z j
t w j

t

w j
t  P ij

w
=

xi
c
x j

t
wi

c w j
t

 yi
c
 y j

t
wi

c w j
t

 zi
c
z j

t
wi

c w j
t

w i
c w j

t 

U={u0 ,⋯ , ur}

V={v0 ,⋯ , v s}

C w
u
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NURBS surfaces

 Case 2 :  M(v) is imposed : 
Purpose : align the section along the trajectory
                curve

 Determination of M(v)
 Global coordinates : {O,X,Y,Z}
 Local coordinates along T(v) :

                             (tangent vector)

 Let            a vectorial function satisfying 
, that will be computed later. It will serve as a reference axis to set 
the orientation of the section curve along the trajectory :

T w
v 

S u , v =T vM v C u

x v =
T ' v
∣T ' v∣

ov =T v

B v  B v ⋅x v =0∀ v

{ov , x v , y v  , z v}

z v=
B v
∣B v∣ y v =z v ×x v

C w
u
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NURBS surfaces

 M(v) is a matrix that allows to transform the 
coordinates from                                     to  
(trivial)

 This problem is that M(v) does not lead to a NURBS 
surface in the general case, because the dependence 
in v is arbitrary.

 The surface that we want to build is therefore an  
approximation.

 How to determine the P
ij
 ?

{O , X ,Y , Z }{ov , x v , y v  , z v}

S u , v=T v M v C u 

~S w
(u , v)=∑

i=0

n

∑
j=0

m

N i
p
(u)N j

q
(v )P ij

w
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NURBS surfaces

 Two techniques  (among others)
1) With the algebraic form
, generate a grid of          points exactly on S(u,v). By interpolation, 
determine positions of CP of a surface passing by these points (not 
described here)

 Disadvantage : no isovalues of     according to u or v is exactly on S

2) By interpolating many instances of the section (oriented 
appropriately by M) along the trajectory, using a technique known as 
« skinning » (described in the sequel)

 Allows to interpolate exactly the trajectory and the instances of the 
profile at nodes v

i
 – ( but the surface remains an approximation 

everywhere else)

S u , v =T v M v C u
n×m

S
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NURBS surfaces

The technique described here :
 We place many instances of the section along the trajectory. These 

are oriented appropriately by M(v) .

 We then build a surface (skin) interpolating exactly these instances 

 The C
k
(u) are therefore isoparametrics of the skin P(u,v) for constant 

values of v , 
moreover, they are NURBS :

 Problems to solve :
 Computation of the position of points of interpolation along the trajectory 

curve (especially the vectorial function B(v) )
 Computation of the final surface

C k u , k=0⋯K

C k
w
(u)=∑

i=0

n

N i
p
(u)C i , k

w

U ={u0 ,⋯ , ur }
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NURBS surfaces

 The surface has the following form :

 We have to determine :
- the values of the parameter v for which curves C

k
 interpolate             

  . We shall call these values 

- the nodal sequence

- the control points         …

V={v0 ,⋯ , v s}

V̄={ v̄0 ,⋯ , v̄K }

~S w
(u , v)=∑

i=0

n

∑
k=0

K

N i
p
(u)N k

q
(v )P i , k

w

~S w
(u , v )

P i , k
w
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NURBS surfaces

 Computation of values     for which we interpolate, and 
deduction of the nodal sequence V 

 The number of nodes of V is s+1 
 The number of interpolated positions is K+1 (min. given by the user)
 The degree of the trajectory is q (imposed)

We want, if possible, to keep the nodal sequence of the trajectory ( same 
domain for v ).

If                     everything is OK.
If              , inserting nodes in the nodal sequence is needed
  →                   nodal insertions
If                    , add interpolated positions 
in such a way that 

s≤K+q
K+q−s+1

s > K+q+1
s=K+q+1

s=K+q+1

v̄ i
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NURBS surfaces

 Case where we must make nodal insertions
 We aim at an approximately regular repartition 
 The exact location of these insertions does not matter
 For instance, subdividing the longest nodal interval in two equal 

parts (and repeat this                        times ) is suitable.

 The position of the new control points of the trajectory T(v)  is not 
needed, because its nodal sequence is not modified !!! 

V ={0 ,0 ,0 ,1 ,2 , 4 ,8 ,10 ,10 ,10}

V '
={0 , 0 ,0 ,1 , 2 ,4 ,6 ,8 ,10 ,10 ,10}

m=3

V '
={0 ,0 , 0 ,1 , 2 ,3 , 4 , 6 , 8 , 10 ,10 ,10}

V '
={0 , 0 ,0 , 1 ,2 , 3 ,4 , 5 ,6 ,8 ,10 ,10 ,10}

Kq−s1
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NURBS surfaces

 Computation of the values of the parameter v for the 
interpolation, 

 The repartition depends on the nodal sequence
 For a node have a multiplicity of q, the curve interpolates one of the 

CPs, therefore this value must be part of  the 

A sliding average on q nodes (where q is the degree) is a good 
solution :

Example with q=2 : 9 control points and as many interpolation points

v̄ k=
1
q∑i=1

q

v k+i , k=1 ,⋯ , K−1 , v̄0=v 0 v̄ K=v
s

'

V '
={0 , 0 , 0 ,1 ,2 , 3 ,3 , 6 ,8 , 10 , 10 ,10}

V̄={0 ,
1
2

,
3
2

,
5
2

,3 ,
9
2

, 7 ,9 , 10}

V̄={v̄k} , k=0 ,⋯, K
v k

v̄ k
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NURBS surfaces

 Two things remain to be done 
1 : computation of positions of the instances of the profile curve, i.e. 
computations of positions of CPs of each instance C

k

2 : computation of the position of control points of curves passing 
through the control points of the instances
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 Computation of the instances of the section (profile)

C k
w
(u)=∑

i=0

n

N i
p
(u)C i , k

w

C w
(u)=∑

i=0

n

N i
p
(u)C i

w

S u , v =T v M v C u

C i , k
w
=M w

(v̄ k )⋅Ci
w

x v k =
T ' v k 

∣T ' v k ∣

o v k =T v k  B vk 

{O , X , Y , Z }

z v k =
B vk 

∣B vk ∣

y v k = z v k ×x v k 

{ovk  , x v k  , y v k  , z vk }

C i
w
=(

x i wi

y i wi

z i wi

wi

) C i , k
w
=(

x i , k w i , k

y i , k wi , k

z i , k wi , k

wi , k

) M w
vk =

∣ ∣ ∣ ∣

x v k  y v k  z vk  o v k 

∣ ∣ ∣ ∣

0 0 0 1
⋅w v k 

given
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 Computation of
 Purpose : Have a similar orientation as the Frenet frame…

… by avoiding problems raised by the following definition (Frenet)

B v k 

B(v̄ k )=
T '

(v̄ k )×T ' '
( v̄ k)

|T '
(v̄ k )×T ' '

( v̄ k)|

B vk Three problems if           is related to Frenet frame:

1-           is not defined at places where T(v) is a 
straight line (locally) or at inflexion points

2-           abruptly changes its orientation before and 
after an inflexion point

3-  For three-dimensional trajectories, vectors 
obtained by the use of           can turn arbitrarily fast 
around the curve

B vk 

B vk 

Bvk 
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 Computation of 
 We want a result like that :

B v k 
 Method of the normal 

projection*
 We are going to compute 

explicitly the values of      
    for each parameter

 Let             the increasing 
sequence of the 
parameter v . We 
compute 
by the following way :

B v k 

vk

* P. Stiltanen and C. Woodward, Normal orientation methods for 3D offset curves, sweep surfaces and 
skinning, Proc. Eurographics'92, 11(3), pp. C 449 – C 457, 1992.

v0⋯v K

B k=B ( v̄k )

T k=
T '
( v̄ k )

|T '
( v̄ k )|

b k=Bk−1−(Bk−1⋅T k )T k

Bk=
b k

|b k|
B0

Attention: avoid having 
Therefore K must such that the curve 
“turns” less than 90° between        and     ) 

T k // Bk−1

v k−1 v k
 is imposed 
by the user
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 Case of periodic curves
 In general, 
 We can do the computation in two opposite directions:

 Then we set

BK≠B0

B̂0→ B̂K

B̄K→ B̄0

Bk=
B̄k+ B̂k

2
, k=1 ,⋯ , K−1
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 Global interpolation on a curve
 We have interpolation points
 We have a nodal sequence : 
 We have the values of v for the interpolation :

 Now, we need to compute the expression of curves passing through 
the CP of the instances of the profile:

 The control points of these curves are the control points of the 
surface that is sought. Why ?

- because the expression of the surface is separable in u and v. See 
how we were able to compute the control points of an isoparametric on 
a B-Spline surface – see e.g. slide 36 of chapter 5

V '
={v i

'
} , i=0 ,⋯ , s'

V̄={v̄ j} , j=0 ,⋯ , K

T i
w
(v)=∑

k=0

K

N k
p
(v)P i ,k

w such that T i
w
(v̄ k )=C i , k

w
∀ k=0 ,⋯ , K

C i , k
w
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 We obtain a linear system

 The matrix A only depends on the nodal sequence 
and the values 

 For each series of CP, this system is to be solved 4 times (once for 
each coordinate x,y,z and w) ,  4(n+1) times in total.

 Best choice : LU decomposition (once) + back substitution ( 4(n+1) times 
with each different right hand side)

T i
w
(v)=∑

k=0

K

N k
p
(v)P i ,k

w such that T i
w
(v̄ k )=C i , k

w
∀ k=0 ,⋯ , K

(
N 0

p
( v̄0) ⋯ N K

p
(v̄0)

⋮ ⋱ ⋮

N 0
p
( v̄K ) ⋯ N K

p
( v̄K)

)(
P i ,0

w

⋮

P i , K
w )=(

C i ,0
w

⋮

C i , K
w )

(A)⋅(P i
w
)=(C i

w
)

V '
={v i

'
}

V̄={v̄ j}
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 Final surface

S w
u , v =∑

i=0

n

∑
k=0

K

N i
p
uN k

q
vP i , k

w V '
={v i

'
} , i=0 ,⋯ , s'
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NURBS surfaces

 Extrusion of the red curve along the green one
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NURBS surfaces

 Skinning
 Consists in generation of a « skin » supported by a 

series of curves 
 The curves C

k
  are interpolated

 The C
k
(u) so are isoparametrics of the skin P(u,v)  and are NURBS 

curves :

 We assume they are compatible (same nodal sequence, same 
degree, same number of CPs)

 If it is not the case, use algorithms seen before to make them 
compatible (nodal insertion and degree elevation)

C k u  , k=0⋯K

C k
w
(u)=∑

i=0

n

N i
p
(u)C i , k

w U={u0 ,⋯ , ur }
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NURBS surfaces

 Skinning
 The technique seen for building the profiled surface 

may be used
 However, the trajectory curve is not known

 We need to build a nodal sequence V, choose an order q and the 
values              for which we interpolate the curves C

k
.

 The number of curves C
k
 is imposed : it is  K+1 .

 The explicit expression of the trajectory curve is, in fact, not 
needed !

V={v i} , i=0 ,⋯ , s

V̄={v̄ j} , j=0 ,⋯ , K

V̄={v̄ j}
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 Skinning
 Determination of the degree q

 Arbitrary (user choice) but must be below K+1

 Determination of the values 
  K+1 (nb of curves to interpolate) is fixed.
 It is done by computing an approximation of the average arc length 

(averaged over the n control points of the curves to interpolate) :

V̄={v̄ j}

v̄0=0 ; v̄K=1 ;

v̄k=v̄k−1+∑
i=0

n |C i , k
w
−C i , k−1

w |
d i

, k=1⋯K−1

d i=∑
k=1

K

|C i , k
w
−C i , k−1

w | C i ,0
w

C i , K
w
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NURBS surfaces

 Skinning
 Determination of the nodal sequence

 The same technique of sliding average previously used...

, but it is “reversed” to get      in terms of 

 There can't be multiple nodes except at boundaries ...

v̄ k=
1
q∑i=1

q

v k+ i , k=1 ,⋯ , K−1 , v̄0=v0 v̄K=v s

vkq=
1
q ∑

i=k

kq−1

v i ; k=1 ,⋯ , K−q ; v0=⋯=vq=v0 ; v K1=⋯=vKq1=v K

v k v̄ k
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NURBS surfaces

 Skinning
 We now have a nodal sequence, values of v for which 

the curves C
k
 are interpolated, and their control points.

 The remaining (determination of the coordinates of the 
CPs of the surface) is identical to the previous case of 
an extrusion along a defined curve.
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 Least squares
 Suppose we have a huge number of 3D samples 

(from laser sampler), for an object.
We want to reconstruct a shape, for which the 
description shall be both light and accurate.
However, there are sampling errors, let's suppose 
those errors follow a normal distribution.
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 1D case (curves)
 Suppose we have N samples :

One wants to approximate these with a curve that has 
n parameters , with n << N :

ek=(
xk

yk

zk
) , k=0…N−1 ,  with a standard deviation σ k

C (u)=∑
i=0

n−1

P i⋅φi(u)
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 The discrepancy                      between the curve and 
the samples is weighted by the inverse of the normal 
deviation

 if the latter is small, then the curve shall be closer to the sample

 We get :

 We do not have the u
k 
's yet. Those must be 

computed, for instance considering that the samples 
are equidistant in the parametric space, or this way :

 Anyway; this sequence should be built before minimizing the error 
so that the problem remains linear.

∥C (uk )−ek∥

err k=(
1
σk

∥C (uk )−ek∥)
2

=( 1
σk

∥∑
i=0

n−1

Pi⋅φi (uk )−ek∥)
2

uk−uk−1=∥ek−ek−1∥ , k=1…N−1 and u0=0.
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Least Squares

 One wishes to minimize the total error over all 
samples :

with respect to the control points

 One can express the total error along each axis :

χ
2
=∑

k=0

N−1
1

σk
2∥∑

i=0

n−1

P i⋅φi(uk )−ek∥
2

P i=(
pxi

py i

pz i
) , i=0⋯n−1

χ
2
=∑

k=0

N−1
1

σk
2 (∑

i=0

n

pxi⋅φi (uk )−xk)
2

+  terms in y  and z



76

Computer Aided Design

Least Squares

 One can put it in a matrix form :

with 

χ
2
=(J Px−Ex )

TW (J Px−Ex )

+ (J P y−E y )
TW (J P y−E y )

+ (J Pz−Ez )
TW (J Pz−Ez )

J=(
φ0(u0) ⋯ φn−1(u0)

⋮ ⋮

φ0(uN−1) ⋯ φn−1(uN−1)
)

W=(
1 /σ0

2
⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1/σ N−1
2 )=(

w0 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ wN−1
)

Px=(
px0

⋮

pxn−1
)

Ex=(
x0

⋮

x N−1
)
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 Now one wants to minimize the error
 thus the differential of the error with respect to each P

i
 should vanish

e.g. ∂χ
2

∂ xpi

=
∂ (J Px−Ex )

TW (J Px−Ex )
∂ xpi

=
∂ (J Px−Ex )

T

∂ xpi

W (J Px−Ex )+ (J Px−Ex )
TW

∂ (JP x−Ex )
∂ xpi

=
∂P x

T

∂ xpi

JTW (JP x−Ex )+ (JP x−Ex )
TWJ

∂Px
∂ xpi

(0 ,⋯ ,1 ,⋯ ,0) (
0
⋮

1
⋮

0
)

=2 [JTWJPx−J
TWEx ]i th  line=0
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 Overall, this should be written for each variable, thus :

 This system can be solved by an LU decomposition of
 .

∇ P χ
2
=(

2 JTWJP x−2 JTWEx
2 JTWJP y−2 JTWE y
2 JTWJP z−2 JTWEz

)=(
0
0
0)

{
Px=(JTWJ )

−1
JTWEx

P y=(JTWJ )
−1
JTWE y

Pz=(JTWJ )
−1
JTWEz

JTWJ
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Least Squares

 Sampling of a trunk, slice as a periodic B-Spline
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NURBS surfaces

 NURBS = open modelling system
 The following geometries cannot be 

represented exactly using NURBS :
 Profiles extruded along any trajectory (except  

straight lines and circles)
 Curve at a given distance of another curve
 Intersection of two NURBS surfaces
 Projection of a NURBS curve on a surface
 Many other cases … however, by increasing 

the number of control points and/or the degree, 
convergence toward the exact geometry is 
usually very fast.


