

1

CAD & Computational Geometry

Course plan

 Introduction
 Segment-Segment intersections
 Polygon Triangulation
 Intro to Voronoï Diagrams & Delaunay Triangulations
 Geometric Search
 Sweeping algorithm for Voronoï Diagrams

2

CAD & Computational Geometry

Geometric Search

 In the incremental Delaunay triangulation algorithm, it may
be necessary to find the triangle T

i
 (of the triangulation with

n-1 points) that contains the next point to insert (p
n
).

T
i

P
n

3

CAD & Computational Geometry

Geometric Search

 Some geometric search techniques
 Case of the Delaunay triangulation – a relatively

straightforward solution
 General case in 2D : the « trapezoidal map »
 Some other approaches and extensions to 3D: octrees

4

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 One can build a Directed Acyclic Graph while triangulating

(DAG)
 Root : the big triangle that contains all the others vertices

1

1

5

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Building a directed acyclic graph (DAG)

 Two types of operations : 1 – insert a vertex (cuts a triangle in 3 or
two triangles in 4

1

 2  3  4

 2  3

 4

6

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Building a directed acyclic graph (DAG)

 Two types of operations : 1 – insert a vertex (cuts a triangle in 3 or
two triangles in 4

1

 2  3  4

 2  3

5  6  7

5

 6

 7

7

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Building a directed acyclic graph (DAG)

 Two types of operations : 2 – edge swapping

1

 2  3  4

8
 3

5  6  7
 9

 6

 7

8  9

8

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Building a directed acyclic graph (DAG)

1

 2  3  4

8
 3

5  6  7
 9

 6

8  9

10
11 12

10

1112

9

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Building a directed acyclic graph (DAG)

1

 2  3  4

8
 3

5  6  7
 9

8  9

10
11 12

10

12

13 14

13 14

10

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Search of a triangle containing a given point (unknown as of

now) using the DAG...

8
 3

 9

10

12

13 14

p
i

11

CAD & Computational Geometry

Geometric Search

 Case of the Delaunay triangulation
 Search of a triangle containing a given point (unknown as of

now) using the DAG...
 It is sufficient to follow the edges of the DAG

1

 2  3  4

8
 3

5  6  7
 9

8  9

10
11 12

10

12

13 14

13 14

p
i

 2  3

 4

1

12

CAD & Computational Geometry

Geometric Search

 Efficiency: the cost of the search is proportional to the
number of triangles containing the point (including all
triangles that have been created since the beginning, and do
not exist anymore !)

 How many such triangles (size of the DAG) ?

At most 9n+1 (Delaunay triangulation with n vertices)

 Proof

13

CAD & Computational Geometry

Geometric Search

 Proof that at most 9n+1 triangles are generated
 A step r : one inserts the point into the current

triangulation
 Cut 1 or 2 triangles to form 3 or 4 new triangles
 Edge legalization → 2 more new triangles at each time

 If a vertex p
r
 has a valence or degree equal to k, then one creates at

most 2(k-3) + 3 = 2k-3 new triangles when inserting it. What is this
valence for every possible permutation of the P

r
 (set of points

inserted up to now) ?
 Such a triangulation has at most 3(r + 3) – 6 edges (cf Euler relations, less. 8, p.

15)
 Three of these are from the initial triangle, thus the sum of all degrees in P

r
 is

less than 2(3(r + 3) – 9) = 6r
 The mean value of the valence of p

r
 is therefore 6.

 The linearity of the expected value (mean value) allows us to say that, in
average, at most 2∙6 – 3 = 9 triangles are created at step r .

 In total, 9n+1 triangles counting the initial triangle.

pr∈P

14

CAD & Computational Geometry

Geometric Search

 How many triangles actually contain the point ?
 It depends on the sequence of the operations made until now (the

algorithm must therefore be randomized)
 A statistical analysis in the case of Lawson’s algorithm shows a

complexity of O(log n) in average for this search.
 It is not possible to generalize this for any triangulation with n points !
 Lengthy proof : cf book p. 206

 The global complexity is therefore nlogn.

(what about mesh generation, i.e. the insertion of a vertex
for which the position is known ?

15

CAD & Computational Geometry

Geometric Search

 General 2D case: the « trapezoidal map »
 In any polygonal paving of the plane, allows to find, in

logarithmic time, the polygon containing any given point.

16

CAD & Computational Geometry

Geometric Search

 General 2D case: the « trapezoidal map »
 A trivial partitioning: a vertical line goes through every vertex

of the paving, slicing it with additional edges which never
intersects each other

Sorting slices by increasing x coordinate

Sorting the
edges by
increasing y
inside each
slice

17

CAD & Computational Geometry

Geometric Search

 Trivial partitioning: Looking for a polygon that contains a
given point

1 – Find the slice containing the point (in log n) with a binary search,
the number of slices being at most 2n (n = number of edges)

 2- Find which edge (or half-edge)
immediately below the point. It points to the
adequate polygon. If there is no such
polygon, then the point is outside the
structure. In may also be done in O(log n)
(at most, there are n edges in the slice)

 Globally, the search is in O(log n), which is
perfectly fine...

 But what about the time spent to build the
search structure, and the memory
footprint ?

18

CAD & Computational Geometry

Geometric Search

 Trivial partitioning : Memory footprint and time spent
 Worst case : in O(n²) …
 Usual case : in

In both cases, the setup of the
search structure takes at least
O(n² log n) or .

 In fact, this partitioning is a
refinement of the paving for which
the complexity worse than the
complexity of the initial paving

 One needs to find a better
partitioning for which the complexity
is of the same order O(n)

O n n

n/4 slices

n/4 edges
in each
slice

O n n log n

19

CAD & Computational Geometry

Geometric Search

 A “cheaper” partitioning
 Draw vertical lines from each vertex until one meets the edges of

the paving (or the edges of the bounding box)

 Properties of the cells then obtained:

- they are convex

- they have 1 or 2 vertical sides, and exactly
two non vertical sides

- they are either trapezoids or triangles
 We will first admit that the points are in

general positions (in particular, the x
coordinates are all distinct)

20

CAD & Computational Geometry

Geometric Search

 There are 5 different configurations for the left side of a trapezoid

(a) Those with a left vertical side limited to a point

(b) Those where the left vertical side as a prolongation of the upper
edge

(c) Those where the left vertical side as a prolongation of the bottom
edge

(d) Those where the left vertical side as a prolongation of the right
vertex of another edge

(e) The only trapezoid for which the left side is a boundary of the
bounding box

(Same thing on the right...)

leftp  
top  

bottom  

leftp  
top  

bottom  

leftp  
top  

bottom  

leftp  

top  

bottom  

(a) (b) (c) (d)

leftp  

bottom  

(e)

top  

21

CAD & Computational Geometry

Geometric Search

 There are 5 different configurations for the right side of a trapezoid

(a) Those with a right vertical side limited to a point

(b) Those where the right vertical side as a prolongation of the upper
edge

(c) Those where the right vertical side as a prolongation of the
bottom edge

(d) Those where the right vertical side as a prolongation of the left
vertex of another edge

(e) The only trapezoid for which the right side is a boundary of the
bounding box

rightp  
top  

bottom  

top  

bottom  

top  

bottom  

top  

bottom  

(a) (b) (c) (d)
bottom  

(e)

top  

rightp   rightp  

rightp  

rightp  

22

CAD & Computational Geometry

Geometric Search

 Each trapezoid is defined by the 4 following entities, whatever the
global configuration (23 different configurations all-in-all)

 One defines the neighborhood as follows : the trapezoids and
are adjacent if they share a vertical edge.

 As the set of edges is in general position, there are at most 4 neighbors. For each
neighbor, top or bottom is shared with

rightp 

bottom 

leftp 

top 

 '


 ' UL

 ' LL

 ' UR

 ' LR






 ' UL

 ' LL

 ' UR

23

CAD & Computational Geometry

Geometric Search

 What is the complexity of this decomposition ?
It has at most 6n+4 vertices and 3n+1 trapezoids.

Proof :

- Case of the vertices
One vertex of the decomposition is either :

- a vertex of the bounding box (max 4)

- a vertex belonging to one of the edges of the initial paving (max 2n)

- the intersection of an edge (or the bounding box) with the vertical edges coming
from extremities of the n initial edges. As there are obviously only 2 prolongations
per extremity, one going up and one going down, we have at most 2(2n) such
vertices.

 Globally, 4+2n+4n = 6n+4 vertices is a maximum.

24

CAD & Computational Geometry

Geometric Search

- Case of the trapezoids : each trapezoid has one point leftp. This point
is either and extremity of the n segments ; or the lower right corner of
the bounding box. By analyzing the 5 configurations for leftp , we get :

 Case (e) cannot happen for more than one trapezoid, (1 trapezoid)
 For a given right extremity of an initial edge, cas (d) may happen only for one

trapezoid, (n trapezoids)
 For a given left extremity of an initial edge, cases (b) and (c) apply, therefore at most

for 2 trapezoids. (2n trapezoids)
 For case (a), one may consider that leftp is the left extremity of bottom. Hence, the left

vertex of an endge s may be leftp of only two trapezoids, one above and one below.
One therefore count some trapezoids multiple times when assimilating (a) into cases
(b) or (c)...

Therefore, there are at most 3n+1 trapezoids.

leftp  
top  

bottom  

leftp  
top  

bottom  

leftp  
top  

bottom  

leftp  

top  

bottom  

(a) (b) (c) (d)

leftp  

bottom  

(e)

top  

25

CAD & Computational Geometry

Geometric Search

 Search data structure in the trapezoidal map

 The white circles are nodes, where
a test is made on the x coordinate
(x-nodes)

 The grayed circles are nodes where a test
is made on the y coordinate (y-nodes)

 Squares are leaves (the trapezoids)
 The structure is not unique !

A

B

C

D E

F
G

H

I

p
1

p
2

q
1

q
2

p
3

 p
1

 q
1A

 q
2

 s
1

s
1

s
2

s
3

B
 p

2

C
 s

2

D
 p

3

G

E

I

 s
3

 s
2

 s
3

F H

26

CAD & Computational Geometry

Geometric Search

 The incremental construction of the trapezoidal map
 The trapezoidal map is unique. However, the search structure

associated to the map is not unique, it depends in which order new
edges are inserted in the structure.

 The global algorithm therefore have to be randomized, and will
update, at the same time, the search structure and the map.

 At the end of each step i, the map and the search structure is valid,
coherent and allows the insertion of a new edge at step i+1. (let us
call this the invariant of the incremental algorithm)

27

CAD & Computational Geometry

Geometric Search
 General algorithm

TrapezoidalMap(S)
Input : a set S of n edges in the plane (non intersecting)
Output : a trapezoidal map T(S) and a search structure R (in a bounding box B)
{
 Compute the bounding box B that contains S, and initialize the map T and the search structure R.
 Compute an arbitrary random permutation s

i
 of the edges in S.

 For i from 1 to n
 {
 Find the set of trapezoids ∆

0
 … ∆

k
 intersecting s

i

 Delete ∆
0
 … ∆

k
 from T and replace by the new trapezoids that appear because of s

i
.

 Remove the leaves that correspond to ∆
0
 … ∆

k
 in R, and create new leaves for the new trapezoids.

 Link the new leaves to the internal nodes R and create new comparison nodes
 }
}

28

CAD & Computational Geometry

Geometric Search

 Initialization

A

A

T R

29

CAD & Computational Geometry

 Insertion of an edge s
i

 First we need to find the ordered list of trapezoids intersected by the
edge.

One may notice that the list contains only neighboring trapezoids (in
the meaning given previously), therefore, ∆

j+1
 is a neighbor of ∆

j
.

 More precisely,if rightp(∆
j
) is above s

i
 , then ∆

j+1
 is the neighboring

lower right trapezoid (∆'
LR

), otherwise it is the upper right neighboring
trapezoid (∆'

UR
)

 It is therefore only necessary to determine ∆
0
 (starting point p) and

loop over neighbors until q is on the right to or equal to rightp(∆
j
)

Geometric Search

∆
0

s
i

∆
1 ∆

2
∆

3
p

q

30

CAD & Computational Geometry

Geometric Search

 Algorithm used to look for the set of intersected trapezoids

SearchTrapezoids(T,R,si)
Input : the map T, search structure R on T, the segment to intersect with
Output : A sorted list of the trapezoids intersected by s

i

{
 Let p and q the left and right extremities of s

i

 Lookout p in R to get ∆
0

 j=0
 While q is on the right or equal to rightp(∆

j
)

 {
 If rightp() is above s

i

 ∆
j
 is the lower right neighbor (∆'

LR
)

 Else
 ∆

j
 is the upper right neighbor (∆'

UR
)

 j=j+1
 }
 Return ∆

0
 … ∆

j

}

31

CAD & Computational Geometry

Geometric Search

 Algorithm used to look for the set of intersected trapezoids (follow-
up)

Special case if p belongs to the points already inserted in T : In this
case, at some point during the search of ∆

0
, p will be exactly on the

vertical line over an x-node, and we have to consider it is in fact
slightly on the right – and continue the search for ∆

0
. It amounts to

consider that points located exactly over an x-node are in fact on the
right. Thus, ∆

0
 corresponds to the first trapezoid on the right of p

(which is cut by s
i
). The same idea applies if p is exactly on a y-node,

the slopes must be compared to decide on which side to “go”.

∆
0

s
i

∆
1 ∆

2

∆
3

p=p
1

q A

∆
0 B

p
1

s
A

B
s

32

CAD & Computational Geometry

Geometric Search

 Insertion of an edge s
i

 Modification of T

Delete the trapezoids from T, and replace them by new ones.
 How many ?

- There is a set of trapezoids for which s
i
 is the inferior segment

(bottom) and for which the leftp and rightp vertices are located above s
i

- There is another set for which s
i
 is the superior segment (top) and for

which leftp and rightp are located below s
i

- Then there is a pair of trapezoids to the left and right when the
segment is composed of vertices not already part of T.

∆
0

s
i

∆
1 ∆

2
∆

3
p

q

∆
a
∆

b ∆
c ∆

d
∆

e

∆
g

∆
f

33

CAD & Computational Geometry

Geometric Search

 Modification of T

- All these operations take a time proportional to the number of
trapezoid crossed by the edge s

i
.

∆
0

s
i

∆
1 ∆

2

∆
3

p

q

∆
a ∆

b ∆
c

∆
d ∆

e

∆
f

∆
0

s
i

∆
1

∆
2

∆
3

p

q
∆

a ∆
b

∆
c

∆
d

∆
e

34

CAD & Computational Geometry

Geometric Search

 Update of the search structure R

The leaves corresponding to trapezoids crossed by s
i
 must be

updated.

- Simple example with one trapezoid :

- In the case where the extremities of s
i
 already belong to

T (leftp and rightp of ∆), only 2 or 3 trapezoids are
added : the changes are made using the same idea.

∆

p q
A B

C

Ds
i

∆

R
i-1

Step i-1

R
i-1

Step i-1

A

C D

B

p

q

s
i

35

CAD & Computational Geometry

Geometric Search

 Update of the search structure R

- The general case is somewhat more complex...

- principle : if ∆
0
 has p in its interior, then if must

be replaced by an x-node (p) and an y-node (s
i
)

the allows to choose between the three
trapezoids (same on the other side with ∆

k
)

- For each trapezoid entirely cut,
one y-node must be inserted to choose between
the superior or inferior trapezoid

- It is possible that the new leaves connect to more than
one node coming from the tree at step i-1.

∆
0

R
i-1

Step i-1

∆
1

∆
2

∆
3

A

R
i-1

Step i-1

B C

D

E

qs
i

s
i

s
i

F

∆
0

s
i

∆
1 ∆

2

∆
3

p

q

A B
C D E

F

s
i

36

CAD & Computational Geometry

Geometric Search

 The validity of the algorithm is guaranteed by the invariant :
at each step i, T

i
 and R

i
 are coherent with the i segments

that have been inserted.
 Performances ?

 Depends in which order the segments are inserted into R.
 It can be shown that for degenerate case (e.g. when segments are

sorted by position), R may be built in O(n²), and the search in R may
be as worse as O(n).

 However, in average, for the n! permutations in the order in which
segments are inserted, the building time for R is in O(nlog n) and a
single search in O(log n)

37

CAD & Computational Geometry

Geometric Search

 Degenerate cases ...
 It is the case where vertices may have equal x coordinates...
 Use of a virtual shear transformation that does not change the x-

ordering of nodes having distinct x coordinates.

 This transformation is virtual : we will just evaluate the result of
applying this transformation to the result of the predicates used in
the algorithms. The coordinates will not be changed in reality.

x

y

x

yε

 :  x
y  x y

y 

38

CAD & Computational Geometry

Geometric Search

 Two predicates are used
1 – comparison between two points p and q to know if q is on the right of p, on
the left, or on a vertical line from p (at x-nodes)

2 – comparison of a point q with a segment p
1
p

2
 to know if q is above, below or on

the segment (at y-nodes)
 Lets apply the transformation and check what happens in case 1 :

- if x
p
≠x

q
 , the comparison is made on x

p
 and x

q
 and determines the

result, because the ordering on x is not changed by ε (too small).

- if x
p
=x

q
, then the relation between y

p
 and y

q
 determines the result.

 Therefore, it is sufficient to perform the test on a lexicographic order
of (unchanged) nodes to simulate the shear transformation.

 p= x p y p

y p
 et q= xq yq

yq


39

CAD & Computational Geometry

Geometric Search

 Second case, comparison of a point q with a segment s=p
1
p

2
.

 We will test the following entities:

One condition is always verified before any test in a y-node : the
vertical through q intersects s : x

1
 + εy

1
 ≤ x

q
 + εy

q
 ≤ x

2
 + εy

2
 .

This implies x
1
 ≤ x

q
 ≤ x

2
 .

If x
q
 = x

1
 then y

q
 ≥ y

1

If x
q
 = x

2
 then y

q
 ≤ y

2

Let us consider two cases :

 If x
q
 = x

2
 = x

1
then s is a vertical and y

1
 ≤ y

q
 ≤ y

2
 (in this case, q is

in or on the segment s, and therefore φq is on φs)

 If x
1
 < x

2
 , the transformation φ keeps the ordering, and the test on

the initial coordinates gives the same result.
 Nothing to change here …

φ q=(xq+ϵ yq

yq
) and φ s :{φ p1=(x1+ϵ y1

y1
) , φ p2=(x2+ϵ y2

y2
)}

φq φp
2

φp
1

40

CAD & Computational Geometry

Geometric Search

 In 3D : the case of the Octree
 There does not (yet) exist a simple data structure allowing a

search in O(log n) with a memory footprint in O(n) for any
type of 3D geometries (i.e. independent of the position or
distribution)

 Either we lose in time, or in memory, or both...
 The octree is a reasonable compromise here.
 As the principle is exactly identical to quadtrees, we will

show this case for the sake of clarity

41

CAD & Computational Geometry

Geometric Search

 Same issue as before : quickly find in which polygon is
located a given point q.

 PM-Quadtree (PM stands for polygonal map) – there exist a huge
zoology of datastructures (PR-, MX-, etc...) that we won’t detail here.
It is a recursive decomposition into rectangular cells.

 The principle is shown here on a point set (point quadtree)
 The cost of a search is proportional to the

depth of the tree.
 In turn, it depends on the spatial

organization of the points,
hence there are no interesting upper
bound that is always valid …

42

CAD & Computational Geometry

Geometric Search

 Principle

A

B C

D

E

F

D

r

2 4

1
2

3
4

2.1 2.2 2.3 2.4 2.2 2.4

C

B A

2.4.1 2.4.2 2.4.3 2.4.4

...1 ...2 ...3 ...4

...1 ...3F E

43

CAD & Computational Geometry

Geometric Search

 Complexity of the point-quadtree (depth)
 In the worst case, if two points among the most close are separated

by a tiny distance c, then the parent node of the two distinct leaves
containing each of the two points must have a size that is at most
 .

 If the side of the initial cell of the quadtree is s ; a node at depth i will
have a side equal to

 We have therefore :

 The depth of the internal node satisfies then:

 The total depth (including leaves) is
p = p

n
+1 ,

and satisfies

c

A

B

c 2

s /2i

s

2i
≥c2 ⇒ s

c
≥2⋅2i ⇒ i≤log2

s
c
−1

2

c 2
pn≤log2

s
c
 1

2

p≤log2

s
c
3

2

44

CAD & Computational Geometry

Geometric Search
 In the case of an octree :

 Same reasoning, but the diagonal now measures

Therefore,

 The total depth is therefore limited to :

c
2

3

s

2i
≥c

2

3
⇒ s

c
≥ 2

3
⋅2i ⇒ i≤log2

s
c
−11

2
log23

p≤log2

s
c
1 1

2
log2 3

45

CAD & Computational Geometry

Geometric Search

 Complexity of the point-quadtree (number of cells)
 Lets start from an initial quatree with an internal node and 4 leaves

(n
i
=1, n

f
=4). The construction proceeds by the addition of an internal

node and 4 new leaves, that replace a leaf

Therefore, the number of leaves is n
f
 = 1 + 3 times the number of

internal nodes that have been added, so n
f
 = 3 n

i
 + 1

 How many internal nodes n
i
 ?

Each internal node “contains” at least one point (inside the associated
square area). The squares at a given depth are disjoint and form a
paving of the initial square (there is no area missing)

Therefore, at a given depth, the total number of internal nodes is
bounded by n, the number of inserted points.

 In the worst case, the number of internal nodes is bounded by n (d+1)
 The size of the whole structure is therefore in O(n(d+1)). (same result

for the Octree), and The depth may be high as the number of points …
d~O(n)

46

CAD & Computational Geometry

Geometric Search

 Complexity in building time
 The algorithm is recursive and based on sorting points in the 4

quadrants.
 The quadtree is subdivided until there is only one 1 point in each of

the quadrants of the current level (depth).
 We have seen that the total internal nodes for a given level is at

most n (number of points).
 In the worst case, at each level until depth d, every point but one will

be classified again and the complexity may be as bad as O(n(d+1)).,
with d~O(n) in the worst case.

 Generally, closer to O(n(log n)) because in a good distribution of
points d~O(log n)

 Again, same bound for the Octree...

47

CAD & Computational Geometry

Geometric Search

 PM1 Quadtree
 Allows to classify a polygonal decomposition (like a mesh)
 4 conditions :

1. At most one vertex in a leaf of the quadtree
2. If a leaf contains a vertex, it cannot contain an edge not
emanating from this vertex
3. If a leaf does not contain a vertex, then it can contain at most one
edge
4. Each leaf is maxima (not useful to subdivide more, and impossible
to subdivide less)

48

CAD & Computational Geometry

Geometric Search

 Global cost of such a structure
 Size of the structure : O(L . 2D . (D+A))

(A = average valence of the vertices)
 Depth D of the structure

In the case where the vertices are on a regular grid 2n.2n , a superior
bound is 4.n (n being the number of bits in the coordinates of the
vertices …)

 This is because we avoid having multiple edges in one cell (except
of course if they are connected to the same vertex).

2n

2

49

CAD & Computational Geometry

Geometric Search

 PM3 Quadtree
 Allow also to represent a polygonal decomposition
 Only two conditions :
 1. At most one vertex in a leaf of the quadtree

2. If a leaf contains a vertex, it cannot contain an edge not
emanating from this vertex
3. If a leaf does not contain a vertex, then it can contain at most one
edge
4. Each leaf is maximal (not useful to subdivide more, and
impossible to subdivide less)

 The number of nodes in the quadtree is the same as the one based
only on vertices (point-quadtree)

 The complexity of the cells is increased (contain the complete set of
edges intersecting the cell)

50

CAD & Computational Geometry

Geometric Search

 Global cost of such a structure
 size of the structure : O(L . 2D . (D+A))

(A = average valence of the vertices)
 Depth D of the structure :
 In the case where the vertices are on a regular grid 2n.2n , a superior

bound is n (n being the number of bits in the coordinates of the
vertices …)

 It is similar to the bound of a point - quadtree .
 However, the cells contain a potentially high number of edges (up to

 n …), said otherwise, the partition of the O(n) polygons by the O(n)
cells leads unfortunately to a complexity in O(n²), which makes it
far from optimal (an optimal partition in 2D
would be linear)

51

CAD & Computational Geometry

Geometric Search

 Octree ? Generalization in 3D.
 PM octree
 6 conditions

1- One vertex max. in one leaf

2- If a leaf contains a vertex, it may not contain other edges and
faces not connected to that vertex

3- If a leaf does not contain a vertex, it may contain up to one edge

4- If it does not contain a vextex, and one edge, it cannot contain
any other face that is not connected to the edge

5- If it contain no edge, it can only contain one face

6- Each leaf is maximal

52

CAD & Computational Geometry

Geometric Search

 See reference book for more info

Hanan Samet, Foundations of Multidimensional and Metric Data
Structures, 2006, Morgan-Kaufmann, San Francisco

ISBN 978-0-12-369446-1

