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CAD & Computational Geometry

Course plan

 Introduction
 Segment-Segment intersections
 Polygon Triangulation
 Intro to Voronoï Diagrams & Delaunay Triangulations
 Geometric Search
 Sweeping algorithm for Voronoï Diagrams
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Voronoi Diagrams

 Voronoi Diagrams or Dirichlet Tessellations
 In dimension 2 or 3

Johann Peter Gustav Lejeune Dirichlet (1805-1859) ~ 1850.

 For all dimensions :

Georgy Feodosevich Voronoy (1868-1908) ~ 1908

G.F. Voronoï (1908). "Nouvelles applications des paramètres 
continus à la théorie des formes quadratiques". 
Journal für die reine und angewandte Mathematik 134: 198–287.
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Voronoi Diagrams

 Let P={ p
0
, p

1
, … , p

n-1 
} a point set in the plane

 The Voronoi diagram Vor(P) is a paving of the plane into n 
cells V( p

i 
).

 Inside cell V( p
i 
), the closest point belonging to P is p

i 
.

 Here, the we consider the euclidean distance :

 A point q is inside the cell 
corresponding to point p

i
 iff 

Dist  p , q= p x−q x
2 p y−q y

2

Dist q , piDist q , p j ∀ p j∈P , j≠i
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Voronoi Diagrams

 What is the structure of the Voronoi diagram ?
 The bissector of points p and q separates the plane in two half-planes
 Let h(p,q) the open half plane containing p
 We have then 

and 
 V( p

i
) is the intersection of the n-1 half-planes, a possibly open polygonal region, 

limited by at most n-1 edges and n-1 vertices. The shape is necessarily convex.

p

q

r∈h( p , q)  iff Dist (r , p)<Dist (r , q)

h(p,q)

V  pi= ∩j≠i h  pi , p j

v(p
i
)

 Vor(P) is either 

a) a set formed by n-1 
parallel lines

b) a connected set of line 
segments or half-lines.
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Voronoi Diagrams

 Demonstration
 Case a) straightforward
 Case b) : Let us consider that an edge e that 

bounds two Voronoi cells V(p
i
) and V(p

j
) is a 

line : it separates the plane in two parts. Let p
k
 

a third point, not colinear with p
i 
p

j
 : necessarily, 

the edge e'  bounding V(p
j
) and V(p

k
) is not 

parallel to e and intersects it. The part of e 
which is in h(p

k
,p

j
) cannot be on the boundary 

of V(p
j
) since it is closer to p

k
 than p

j 
.

 Therefore, the edges of the Voronoi diagram 
are either half-lines or line segments, or only 
complete lines as in the case a)

n-1 parallel lines

p
i

p
j

p
k

e

e'
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Voronoi Diagrams

 There remains to prove that the Voronoi diagram is a connected 
graph.

Let us suppose that it is not the case. At least one Voronoi cell woud 
separate the plane in two parts. Since Voronoi cells are convex, its 
bundaries are necessarily made of at least some complete lines, 
which is a contradiction with the previous demonstration (either only 
complete lines; or only line segments and half-lines).
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Voronoi Diagrams

 Complexity of the Voronoi diagram

What is the number of cells, edges and vertices ?
 There are n sites in P ; and in the worst case, a cell may have n-1 

edges and vertices. The global complexity of Vor(P) could be 
quadratic. In fact, it is not the case:

 Euler formula for a plane graph (including the unbounded face 
around the graph) : v – e + f = 2
Here, we consider an additional vertex infinitely far away ; we have 
therefore
n

v
 +1 – n

e
 + n = 2 → 2n

v
  – 2n

e
 + 2n = 2

 Each edge has two vertices ; the sum of the 
valence of each vertex is twice the number
of edges. Also, the valence is at least 3.

v¥

2 ne≥3(nv+1)
2 nv−3(n v+1)+2 n≥2 → nv≤2 n−5

2 n−5+1−ne+n≥2 → ne≤3 n−6
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Voronoi Diagrams

 The number of bisectors is quadratic, but only a small 
fraction (linear in n) are part of the Voronoi diagram.

 Which ones ?

One defines C
P
(q) as the greatest circle of center q which does not 

contain any point p
i
 of P in its interior. It has at least one point of P on 

its boundary. 

Then :
 One point q is a vertex of Vor(P) iff C

P
(q) has at least three points of P on its 

boundary.
 A bissector of points p

i
 et p

j
 exists as an edge in Vor(P) iff there are points q on it 

such that C
P
(q) has p

i
 and p

j
 on its boundary but not any other point of  P.

q

C
P
(q)
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Voronoi Diagrams

 Demonstration
 3 points or more on the boundary → Center of the 

circle is a vertex of the Voronoi diagram
 2 points on the boundary → Center is on an edge 

of the Voronoi diagram
 Only one point on the boundary → Center located 

inside a cell of the Voronoi diagram
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Voronoi Diagrams
 How to compute the Voronoi diagram

 For each cell V(p
i
), compute the intersections of all the half-planes 

h(p
i
,p

j
) with j≠i using the intersection of lines of chapter CG2 

Complexity : in nlog n for each cell (one does not know in advance 
which intersections will be found in the final shape of the cell)

 There are n cells → n²log n globally. However, the complexity of the 
diagram is only O(n)...

 Is it possible to be faster ? → yes !
 Optimum :  Ω(nlog n)
 Demonstration later on.
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Delaunay Triangulations
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Delaunay Triangulations

 Boris Nicolaïevich Delaunay (Delone)
(1890 - 1980)

 Was a student of G. Voronoi
 Developed a theoretical study of 

triangulation that bear his name in
the 30’s

B. Delaunay: Sur la sphère vide. A la mémoire de George Voronoi,
Известия Академии наук СССР.
Отделение математических и естественных наук 6:793–800, 1934
Bulletin de l'Académie des sciences de l'URSS.
Classe des sciences mathématiques et naturelles , 6:793–800, 1934
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Delaunay Triangulations

 Interpolation and why certain triangulations are “better” than 
others

 On the right, the interpolation is using samples that geometrically far 
apart

 There exist “better” triangulation than others with respect to 
interpolation. The Delaunay triangulation is one triangulation among 
others, it has interesting properties precisely if the triangulation is 
used as a basis for interpolation
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Delaunay Triangulations

 Some characteristic properties of a triangulation
 Let P a set of vertices {p

0
 … p

n-1
}, not all collinear, i.e. in general 

position
 Let S be a maximal subdivision of the plane, such that no new edge 

can join two existing vertices without cutting an existing edge in S.
 Necessarily, the edges of the convex hull belong to S.
 A triangulation of P is precisely such a subdivision S for which the 

vertices of the subdivision are taken in P.
 The cells are triangles, as we have seen that any polygon can be 

triangulated with a constant number of triangles.
 What is the complexity of a triangulation (any triangulation) ?

Let k be the number of vertices of P located on the convex hull of P. 
Then, any triangulation of P has 2n–k–2 triangles, and 3n–k–3 edges.
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Delaunay Triangulations

 Some characteristic properties of a triangulation

Let k be the number of vertices of P located on the convex hull of P. 
Then, any triangulation of P has 2n–k–2 triangles, and 3n–k–3 edges.

 Proof : Let m be the number of triangles. In the planar graph, there 
are therefore n

f
=m+1 faces counting the external boundless face. 

Every triangle has three edges, the boundless face has k edges. 
Every edge is incident to exactly two faces

The total number of edges is then n
e
=(3m+k)/2

Euler’s formula must hold for a planar graph, so 

n–n
e
+n

f
= 2

Replacing n
e
,and n

f
 one gets m=2n–k–2  and therefore n

e
=3n–k–3  .

 These bounds are valid in 2D. En 3D, these are quadratic (as seen 
earlier)
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Delaunay Triangulations

 Some characteristic properties of a triangulation
 Let T be the triangulation, and suppose it contains m triangles

Let us consider the 3m angles found at vertices of the triangles of T , 
sorted by increasing order.

Let a
0
,a

1
,... ,a

3m-1
 be the sequence of such angles. Here, a

i 
≤ a

j
 for all  

i < j.

A(T) is the “angular vector” in this ordering.
 Let T' be another triangulation of P (with as many triangles), and let 

A(T') be its angular vector.

Let write A(T) > A(T') (lexicographically greater) iff :

a
j
=a

j
' for all j < i < 3m, and a

i 
> a

i
'.

 A triangulation T is said to be angularly optimal if for any other  
triangulation T' one has A(T) ≥ A(T')
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Delaunay Triangulations

 Thales’ theorem (the other one ...)
 Let l be a line intersecting a circle at two points points a and b.

Let r be a point strictly inside the circle, and p and q two points on 
the circle, and finally s a point strictly outside the circle

Then,
 Proof : by constructing the locus of the points q such that 

                   (a circle !)

Ca

b

s

r

q

p

l

arbapb=aqbasb

âqb=const
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Delaunay Triangulations

 Edge swapping
 Let us consider an edge e = p

i 
p

j
 of a triangulation T from P. If this 

edge is internal, then it has two neighbors : the triangles p
i 
p

j 
p

k
 and  

p
j 
p

i 
p

l
 . If these form a convex polygon one can get a different 

triangulation T' by swapping the edge e.
 The only difference in the angular vector is that the six six angles 

a
0 
.... a

6
 of A(T) are replaced by a

0
'
 
.... a

6
' of A(T').

 Let us call e = p
i
p

j
 an illegal edge if  

 In other words, an edge is illegal if one can make the minimal angle 
greater by performing an edge swap on this edge ans make it legal

p
i

p
j

p
k

p
l

ea
1

a
2

a
3

a
4

a
5

a
6

p
i

p
j

p
k

p
l

e'
a

1
'

a
2
'a

3
'

a
4
'

a
5
'

a
6
'

min
i≤i≤6

i  min
i≤i≤6

i '
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Delaunay Triangulations

 Edge swapping
 Let T be a triangulation with an illegal edge e. Let T' the triangulation 

obtained by swapping the edge e. Necessarily A(T') ≥ A(T) .
 In fact, it is not necessary to compute all 12 angles to check that an 

edge is illegal, thanks to the second theorem of Thales. Let p
i 
p

j
 be 

an edge incident to triangles p
i 
p

j 
p

k
 and p

i 
p

j 
p

l 
, and C the circle going 

through p
i 
p

j 
p

k
. The edge p

i 
p

j
 is illegal if p

l
 is inside the circle C. 

Moreover, if  p
i
, p

j
 , p

k
 and p

l
 form a convex polygon, and are not all 

on the same circle, then only one of p
i 
p

j
 or p

k 
p

l
 is an

illegal edge. The other is necessary legal.

p
i

p
j

p
k

p
l

a

C



  

20

CAD & Computational Geometry

Delaunay Triangulations

 Legal triangulation
 It is a triangulation for which all the edges are legal. 
 The algorithm to get such a triangulation from any other valid 

triangulation is as follows :

 This triangulation always exists because it is always possible to swap 
an illegal edge (and make A(T) better). Each swap is making 
A(T) better; therefore, one does never swap the same edge twice 
(there are no cycles) and the algorithm always finishes as the number 
of  triangulation for a given set of points, although very high, is finite.

LegalTriangulation(T)
Input : an arbitrary triangulation  T of the set P
Output : a legal triangulation of P 
{
   While  T contains an illegal edge p

i
p

j

  {
    Let p

i
p

j
p

k
 and p

j
p

i
p

l
 the two adjacent triangles to p

i
p

j

   erase p
i
p

j
 and add p

k
p

l

  }
  Return T.
}
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Delaunay Triangulations

 Delaunay Graph
 Let G the dual graph of the Voronoï diagram Vor(P) 

The vertices of G are the cells of Vor(P) ; the cells of G are the 
vertices of Vor(P) . An arc links two vertices of G iff two cells of  
Vor(P) share an edge.

 Let DG the Delaunay graph, simply G for which the vertices are 
those of the set P. The edges of this graph are straight lines linking 
those vertices.

G

Vor(P)

DG

Vor(P)
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Delaunay Triangulations

 Properties of the Delaunay graph
 If P is a set of points in the plane, it is necessarily a planar graph – 

i.e. no two edges are intersecting.

Proof : from the properties of the vertices and edges of Vor(P) : 
 A bissector between vertices p

i
 and p

j
 exists as an edge in Vor(P) iff there is a 

point q on the edge such that C
P
(q) has p

i
 et p

j
 on its boundary, and no other 

vertex of P. 

In the case of the Delaunay graph, it can be rewritten:
 An edge p

i 
p

j
 belongs to DG(P) iff there exists a circle going through p

i
 and p

j
 and 

which does not contain any other vertex p
k
 of P.

It is therefore clear that the two edges of DG(P) cannot intersect
, otherwise it would mean that at least one of the vertices 
 (out of  4) would be inside any circle going through p

i
p

j
.

q

C
P
(q)

Vor(P)

p
i

p
j
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Delaunay Triangulations

 Properties of the Delaunay graph

Reformulating properties of Vor(P)
 Three points  p

i
, p

j
, p

k
 of P are vertices of the same cell of DG(P) if the circle going 

through p
i
,p

j
,p

k
 does not contain any other point of P

 Two points p
i
,p

j
 of P define an edge of DG(P) iff there exists at least one circle 

going through  p
i
 and p

j
 such that it does not contain any other point of P

This implies the Delaunay criterion (subjected to the generality 
position of the points p

i
) :

 T is a Delaunay triangulation of P iff the circumscribed circle of any 
triangle of T does not contain any other point of P in its interior.
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Delaunay Triangulations

 Properties of the Delaunay graph
 Question related to the non general configurations of the p

i
 (i.e. k>3 

points may be cocyclic )
 A vertex of the DDV is of valence k
 The Delaunay graph therefore contains cells with k edges (convex cells).
 On may triangulate these cells arbitrarily since all vertices are cocyclic, every 

triangle will respect the Delaunay criterion at the limit (some vertices not 
belonging to the triangle are exactly on the circumscribed circle...)

 Eventually, a Delaunay triangulation is any triangulation satisfying the Delaunay 
criterion (also called criterion of the empty sphere)- it is not necessarily unique if 
the vertices are not in general position. It is otherwise unique.

Vor(P)

s
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Delaunay Triangulations

 Properties of the Delaunay graph
 A triangulation T of P is legal only if it is a Delaunay triangulation
 Proof :It is clear that any Delaunay triangulation is legal (cf p 20).

But is every legal triangulation also a Delaunay triangulation ?
 Yes  - proof by contradiction

Let us suppose that T is a legal triangulation, but not a Delaunay one. Hence, it 
contains at least a triangle p

i 
p

j 
p

k
 whose circumscribed circle contains at least one 

other vertex p
l
 of P. Let us take such a triangle and such a point that, among all of 

them, maximizes the angle               

Let p
i 
p

j
 be the edge e such that p

l 
p

j 
p

i
 does not intersect p

i 
p

j 
p

k
, it does belong to T, 

hence it is legal. Let p
i 
p

j 
p

m
 be the opposite triangle.  p

m
 is not in the circumscribed 

circle of p
i 
p

j 
p

k 
, but the circumscribed circle of p

m 
p

j 
p

i
 contains p

l
 because it contains 

an arc of the circumscribed circle of p
i 
p

j 
p

k
 that is on the same side of e as p

l 
.

Let p
i 
p

m
 be the edge a such that p

m 
p

j 
p

i
 does not intersect p

l 
p

m 
p

i
. Thus, by the 

second theorem of Thales,                           . This contradicts the choice of p
l 
, 

therefore p
l
 does not exist : the triangulation is a Delaunay triangulation.

p
l

p
j

p
k

p
i

p
m

e

a

p̂i pl pm> p̂i pl p j

p̂i pl p j
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Delaunay Triangulations

 Properties of the Delaunay graph

 A Delaunay triangulation of P is angularly optimal, i.e. it maximizes 
the minimal angle of all triangulations of P .

 Every angularly optimal triangulation of P is a Delaunay triangulation 
of P, hence the circumscribed circle of every triangle is empty.
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Delaunay Triangulations
 Example : Simple contour
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Delaunay Triangulations
 Example : Simple contour – monotone polygons
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Delaunay Triangulations
 Example : Simple contour – triangulation
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Delaunay Triangulations
 Example : Simple contour – triangulation
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Delaunay Triangulations
 Example : Simple contour – Delaunay triangulation
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Delaunay Triangulations
 Example : More complex – Contour
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Delaunay Triangulations
 Example : More complex – Monotone polygons
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Delaunay Triangulations
 Example : More complex – Triangulation
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Delaunay Triangulations
 Example : More complex – Triangulation
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Delaunay Triangulations
 Example : More complex – Delaunay Tri. – path 1



  

37

CAD & Computational Geometry

Delaunay Triangulations
 Example : More complex – Delaunay Tri. – path 2
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Delaunay Triangulations
 Example : Quasi-minimum length – path 1
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Delaunay Triangulations
 Example : Quasi-minimum length – path 2


