
1

CAD & Computational Geometry

Elements of computational geometry

2

CAD & Computational Geometry

Book

 Recommended book : M. de Berg, O. Cheong ,
M. van Keveld, M. Overmars , Computational
Geometry, 3rd ed. 2008, Springer-Verlag

Available in electronic format at the library !

3

CAD & Computational Geometry

Introduction

 Example : Problem of urgent thirst

One needs to proceed to the closest bar.

We need a map subdividing the local area in small
regions for which the closest bar is indicated

 What is the shape of the regions ?
 How to build the map ?
 How to determine in which region we are located?
 ...

4

CAD & Computational Geometry

Introduction

Problem of urgent thirst

Solution : Voronoi diagram.

Useful in many, many other applications
 Determination of

Exclusive Economic Zones
(in part)

 Robot path planning
 Crystal growth
 etc...

5

CAD & Computational Geometry

Introduction

 Exclusive Economic Zones...

6

CAD & Computational Geometry

Introduction

 Another example
One has two maps at our disposal

 One describes the buildings (including bars !)
 The other the ways (routes, paths and the like)

To plan a journey, both maps have to be combined. It
amounts to localize entities from a map onto the other
map, compute intersections etc...

These are common problems found in GIS, “Geographic
Information Systems” such as Google maps,
openstreetmaps...

7

CAD & Computational Geometry

Outline of CG

 Introduction
 Some notions of algorithmic complexity
 One example : convex hull of a set of points in 2D
 Basic data structures

 Line intersections
 Polygon triangulation
 Delaunay triangulation
 Search structures
 Voronoi diagrams

8

CAD & Computational Geometry

Introduction

9

CAD & Computational Geometry

Algorithmic Complexity

 Notions of algorithmic complexity

Following definition is given by D. Knuth (1976)
 Big O notation :

Functions at most as big as :
upper bound to the complexity

 Capital Omega notation:

Functions at least as big as :
Lower bound of the complexity

g (n)∈O (f (n)) iff ∃C>0 such that g (n)≤Cf (n)∀ n≥n0

Cf (n)

g (n)∈Ω(f (n)) iff ∃C>0 such that g (n)≥Cf (n)∀ n≥n0

Cf (n)

10

CAD & Computational Geometry

Algorithmic Complexity

 Small thêta notation:

Functions with the same order of magnitude

This is the concept one uses to qualify an algorithm
as optimal with a theoretical result

 Small o notation:

Functions at most as big as not including
, for all C... (including C → 0)

g (n)∈o(f (n)) iff ∀C>0 , g (n)≤Cf (n)∀ n≥n0
Cf (n)

g (n)∈θ(f (n)) iff ∃C1 ,C 2>0 such that
C1 f (n)≤g (n)≤C 2 f (n)∀ n≥n0

θ(f (n))

11

CAD & Computational Geometry

Algorithmic Complexity

The complexity may concern :
 Execution time T
 Maximal Memory use M

There exists two “types” of measures of
complexity
 On the “worst case” (limit = theoretical

performance)
One gets an upper bound on the performance

 On an “average” case (practical performance)
Problem : definition of a typical use case for the algorithm

12

CAD & Computational Geometry

Algorithmic Complexity

 On the “worst case”
This is generally a result that one can get theoretically by
analyzing the algorithm without considering any practical
distribution on the input date

 On the “average” case
Theoretical results are relatively scarce :

- Problem to define the “average case”

- Tremendous mathematical difficulties even if the
distribution considered in the average case is simple

13

CAD & Computational Geometry

Algorithmic Complexity

 Unfortunately (or fortunately), it is clear that the
measure of the complexity on the average case is
(or can be) better than that on the worst case.

 An algorithm of bad theoretical complexity may be good
at use depending on the type of data used as input.

 It remains very important to test... and the theoretical
complexity says nothing about the coefficient of
proportionality … e.g. some algorithms may have better
locality (use of local data), hence perform much better on
recent CPU architectures (less cache misses) than older
but theoretically better algorithms.

14

CAD & Computational Geometry

Algorithmic Complexity

 One may as well determine a complexity with
respect to the output of the algorithm (the solution
to the problem instead of the initial data)

Sometimes, the complexity bound is depending on
this output size

One says that the algorithm has a complexity that is
“output sensitive”

15

CAD & Computational Geometry

Algorithmic Complexity

Classification of geometrical algorithms
 Deterministic algorithms

For a given input, their execution is always following the
same path. The result is obviously identical.

 Randomized algorithms
For a given set of input data, the algorithm may execute
using different paths, but the result will remain the same (and
not depend on the path)...

Advantage : complexity of an average case even if the input
data is unfavorable.

But: beware of floating point computations which are
dependent on the execution path even if theoretical results
should be the same.

16

CAD & Computational Geometry

Algorithmic Complexity

 Incremental algorithms
Those allow to build the optimal solution while adding
primitives one by one, in the order given by the user.
There is no need to know the whole set of input data
before starting.

 Dynamic algorithms
Allow adding primitives as well as the deletion thereof,
while keeping the whole solution valid at every time.

 Algorithm that do not fall into these categories have
to take the complete input data at once. In case of a
modification, the whole construction has to be
started again.

- Randomized algorithms are often of this type !

17

CAD & Computational Geometry

Algorithmic Complexity

 Algorithms that are efficient in C.G.

Often conceived using classical paradigms
 “Divide and conquer”
 Recursion
 ...
 Cf classical books on algorithms (e.g. D. Knuth)

Use of the geometrical characteristic of the problem
 Line sweeping algorithms

 In the plane, one simulate the advance of an imaginary line…
 ...

18

CAD & Computational Geometry

Convex hull in 2D

19

CAD & Computational Geometry

Convexity...

 A set S is convex iff for every couple of points ,
the line segment is completely contained in S.

 The convex hull of a set S is the smallest convex set
CH(S) that contains S.
It is also the intersection of every convex set containing
S.

S is a convex set

a

b

S isn’t a convex set
CH(S) is a convex set

a

b

a , b∈S
ab

CH(S)
S

S

20

CAD & Computational Geometry

Convex hull of a set of points

 Let P a set of n points in the euclidean plane.
One wish to compute the convex hull of this set..

21

CAD & Computational Geometry

Convex hull of a set of points

It is the smallest convex (closed) polygon for which the
vertices belong to P and which contains every point of P.

22

CAD & Computational Geometry

Convex hull of a set of points

 The previous definition is equivalent to the original
definition (but it must be proven ...)

23

CAD & Computational Geometry

Convex hull of a set of points

 How to compute the convex hull ?
What means compute ?
One has to define the input data and the output
(expected result)

For instance, one could list the vertices of the polygon in
a clockwise manner.

p1

p5

p11

p4

p3
p2

p8

p9

p6

p7

p10

Input = Set of points P in any order
p

1
, p

2
, p

3
, p

4
, p

5
, p

6
, p

7
, p

8
, p

9
, p

10
, p

11

Output = Convex Hull CH(P)
 a clockwise list of points :
p

7
, p

2
, p

3
, p

8
, p

6
, p

10

24

CAD & Computational Geometry

Convex hull of a set of points

 How to define the algorithm

The general definition of the convex hull is not very useful
in this case : the intersection of every convex set
containing P involves an infinite number of operations.

We will rather observe that the convex hull has a special
structure in this case : it is a convex polygon whose
vertices belong to P.

 In particular, lets consider one
of the sides of the polygon...

p1

p5

p11

p4

p3
p2

p8

p9

p6

p7

p10

25

CAD & Computational Geometry

Convex hull of a set of points

For one of the edges of the polygon CH(P)
 The extremities belong to P.
 If we follow the line going from a to b so that CH(P) is on the

“right” of us, then all other points of P are also on the right.
 If one takes any oriented line ab and find that all other points of P

are on the right, then ab belongs to the convex hull CH(P).

Only then one can start thinking about writing an algorithm !

ba

26

CAD & Computational Geometry

Convex hull of a set of points

(Slow) algorithm:

b

a

ConvexHullSlow(P, L)
Intput : a set of points P in the euclidean plane
Output : an ordered list of points L of the vertices defining the polygon CH(P) in a clockwise order
{
 E = Ø // set of edges
 For every pair of points with a≠b
 {
 valid=true
 For every point of
 {
 If p is on the left of ab then set valid=false, and exit the loop.
 }
 If (valid=true) then apend (a,b) to E.
 }
 Build an ordered list L of vertices from the
 unordered set of edges E.
}

(a , b)∈P×P

p∈P , p≠a et p≠b

27

CAD & Computational Geometry

Convex hull of a set of points

 Explanations

The operation

is a predicate : it is a basic operation necessary for the
expected exectution of the algorithm. In the sequel of the
course, we expect such operations are available. Here, it
is obvious that this predicated can be computed in a
constant time (i.e. independent from n)

 It means that the asymptotic behavior (when n becomes large) is
not affected by the predicate’s own complexity.

b

a

...
 If p is on the left of ab Then ...
...

p

28

CAD & Computational Geometry

Convex hull of a set of points

 Explanations

 is a non trivial operation.
Here is an example of implementation:

The complexity is proportional to n² , but it is possible to
make this better (in n logn) by an adequate initial sort.

...
 Build an ordered list L of vertices from the
 unordered set of edges E.
… L(1)

L(2) L(3)

L(4)

L(5)
L(6)

E(4)

E(6)
E(5)

E(2)

E(3)

E(1)

BuildOrderedList(E, L)
Input : Unordered list of edges E
Output : a clockwise ordered list of the vertices of the polygon formed by E
{
 Take the first element of E : E(1)
 Add the starting point of E(1) , and the destination into L ; Delete E(1) from the list.
 While E contains more than one element
 {
 Fine the element E(i) for which the starting point is equal to the last element of L.
 Add the destination of E(i) into L ; delete E(i) from the list E ;
 }
}

29

CAD & Computational Geometry

Convex hull of a set of points

Complexity analysis
Quite easy in this case ...

There are n² – n pair of points to be tested
 For each pair, the predicate is checked against the n – 2

other points.
Thus, there are (n² – n)(n – 2) = n³ – 3n² + 2n tests to be made.

When n is huge, the n³ term becomes dominant. We say that the
algorithm takes a time in O(n³) to execute.

We did not take the final sort into account. In the most stupid
implementation, it takes O(n²) to execute.

 It does not affect the global complexity which remains at
O(n³) .

Generally speaking, and algorithm in O(n³) is way too
costly for any practical use if n is significant.

30

CAD & Computational Geometry

Convex hull of a set of points

A more thorough analysis of the predicate
 A point is not always to the right or to the left of a line. It can be

on the line.

 It is a degenerate case because
the points are not in general position.
Otherwise said, some are collinear.

 Lets reformulate the test : an oriented segment ab is an edge of
CH(P) iff every other point in P is strictly on the right of ab, or if
they are on the open segment ab.

It makes sense, because a point in the middle (on the segment)
could be considered as being part of convex hull, but this would
lead to a topologically bigger convex hull (even though it has the
same geometry), so the right thing to do is to avoid this, and
keep only the longest edge corresponding to the collinear points.

b

a p

p'

31

CAD & Computational Geometry

Convex hull of a set of points

 A more thorough analysis of the predicate
 We supposed that the numerical test is accurate (exact).

However, with floating point coordinates, it is not the case.
Sometimes the result given by the predicate is not exact, nor
coherent.
Let’s consider the case of three points a,b et p almost collinear.
The algorithm will test, among others, (a,b), (a,p) and (p,b).
It is possible that nasty rounding errors lead to the test saying
that, at the same time, p is to the right w.r. to (a,b), b is to the
right w.r. to (a,p) and a is to the right w.r. to (p,b).

 It is obviously geometrically impossible and will give an
incoherent result ...

a

b
p Opposite case

a

b
p

32

CAD & Computational Geometry

Convex hull of a set of points

 First algorithm
 Is fundamentally correct ...

if one supposes that the predicate is exact !!

But :
 It is particularly slow - O(n³)
 It has some issues with degenerate cases
 Is not robust if the predicate is not exact (because of the

multiple ways the predicate is used to asses the same results)

It is obvious that better algorithms do exist.

33

CAD & Computational Geometry

Convex hull of a set of points

 Graham’s algorithm

Graham, R.L. (1972). An Efficient Algorithm for Determining
the Convex Hull of a Finite Planar Set. Information
Processing Letters 1, 132-133

34

CAD & Computational Geometry

Convex hull of a set of points

 Algorithm
 One classifies points from right to left
 Then, one adds points of P one by one, keeping the

solution up to date after each addition
 The convex hull is computed in two steps

 The upper part L
sup

 , then the lower part L
inf

pn

p1

35

CAD & Computational Geometry

Convex hull of a set of points

 The delicate step is the update of the convex hull after
each new point insertion p

i
.

 From p
1
, … , p

i-1
 one wants p

1
, … , p

i

 There is one hint: when “walkin” a convex polygon in clowise
fashion, every turn is a “right turn” at each vertex. Therefore :

pi

Deleted points

 p
i
 est obviously the last point of L

sup
, hence

it is inserted
 One checks the 3 last points of L

sup
,

 If the turn is a “right turn”, end here.
 Otherwise, one has to delete the

beforelast point of L
sup

, and recheck the
three last points – until there is a right
turn (or only two points in L

sup
)

 Same idea for L
inf

pi-1

36

CAD & Computational Geometry

Convex hull of a set of points

Algorithm :

ConvexeHull(P, L)
Input : a set of points P in the euclidean plane
Output : an ordered list L of points of CH(P) , in the the clockwise order
{
 Sort all the points of P in increasing x order
 Insert p

1
 et p

2
 in this order in L

sup

 For i=3 to n
 {
 Ad pi to Lsup

 While
 Lsup contains more than 2 points
 AND the 3 last points do not “turn right”
 {
 Delete the beforelast point of Lsup
 }
 }

>>>see next

37

CAD & Computational Geometry

Convex hull of a set of points

Algorithm (sequel):

 Insert p
n
 et p

n-1
 in this order in the list L

inf

 For i=n–2 to 1
 {
 Add p

i
 to L

inf

 While
 L

inf
 contains more than 2 points

 AND the 3 last points do not “turn right”
 {
 Delete the beforelast point of L

inf

 }
 }
 Delete the first and last point of L

inf

 Concatenate L
sup

 then L
inf

 in this order into L.

}

38

CAD & Computational Geometry

Convex hull of a set of points

 What happens when there are points with the same
x coordinate?

 Need to sort this out. If same x , compare with y !

The is called a lexicographical sort.
 What happens when 3 points are collinear ?

 One shoud keep only “external” points

The “right turn” test must then be
considered false.

 With these small changes
the algorithm handles special
cases correctly.

39

CAD & Computational Geometry

Convex hull of a set of points

 Now, what happens if rounding errors are such that the
“right turn” test is wrong ?

 One may fail to delete a vertex that is somewhat inside the
convex hull

 Or one may delete a vertex that should be
on the convex hull

 In every case, the (approximate) convex hull that is computed
here is coherent : a closed polygon, described in clockwise
order, where every turn is a “right turn” – as seen from the
computer’s limited arithmetic capabilities.

40

CAD & Computational Geometry

Convex hull of a set of points

 There also exists the case where a sharp left turn is seen as a
right turn when the three points are very close to each other

Solution : avoid this by merging the very close points (buy
rounding)

41

CAD & Computational Geometry

Convex hull of a set of points

 Analysis of the algorithm and complexity
 For L

sup
: (identical results for L

inf
)

 The main loop is executed n-3 times
 The predicate is evaluated an unknown number of time at

each iteration of the main loop
 However, the TOTAL sum of vertices withdrawn from L

sup

for all iterations cannot exceed n !
 As a consequence, this part of the algorithm is linear in O(n).

 Merging the two lists is also in O(n)
 The sorting at the beginning is usually done in O(n log n)
 As a consequence, the average complexity is O(n log n).

 It is not optimal. The optimal complexity is O(n log h), h
being the size of the output (number of vertices of the
convex polygon (an output sensitive algorithm !)

Chan, Timothy M. (1996). "Optimal output-sensitive convex hull
algorithms in two and three dimensions". Discrete &
Computational Geometry. 16 (4): 361–368.
doi:10.1007/BF02712873.

42

CAD & Computational Geometry

Convex hull of a set of points

 How to design a geometrical algorithm
 First understand the geometrical nature of the problem, avoiding

other distractions that may bring complexity (special and
degenerated cases, etc...)

 Then, once a “good” algorithm has been devised, bring in the
special cases. It is always better to modify the algorithm so that it
handles directly those special cases, instead of, well, having
explicit special cases in the code.

 Then comes the implementation. One needs robust predicates,
and the algorithm may be again adjusted so that it handles nicely
cases where the predicates are failing (because of rounding).

 Cf . second algorithm for the convex hull.

43

CAD & Computational Geometry

Convex hull of a set of points

 Your turn : analysis of Jarvis’s algorithm

 Complexity ?
 Nature (incremental or not, randomized ...)
 Robustness ?

Jarvis, R. A. (1973). "On the identification of the convex
hull of a finite set of points in the plane". Information
Processing Letters 2: 18–21.

44

CAD & Computational Geometry

Convex hull of a set of points

 Jarvis Algorithm : From Pi, sweep through all other
vertices and find the one having the smallest angle.

pi

pi-1

45

CAD & Computational Geometry

Convex hull of a set of points

 Now, what about an incremental algorithm?
 That means we want to be able to insert a given point

P
i
 , knowing the convex hull of the i-1 preceding points.
 That is the first step toward dynamic algorithms, allowing the

deletion a point at any time...
 There exists an efficient implementation :

 Idea : being able to locate efficiently the new point so that the
update of the convex hull is also efficient.

46

CAD & Computational Geometry

Convex hull of a set of points

 One stores the upper and lower branch of the convex hull
into balanced binary trees...

47

CAD & Computational Geometry

Convex hull of a set of points

 One stores the upper and lower branch of the convex hull
into balanced binary trees...

 It is then easy to fin which segment
immediately above and below the point q
that is to be inserted.

4 cases :
 No such elements : OUT
 If q is on one of these elements : ON
 If q is above the element “inf” and

below the element sup : IN
 Otherwise : OUT

 Depending on these cases, one will
insert the point q into the convex hull
(or not).

q

48

CAD & Computational Geometry

Convex hull of a set of points

 Depending on the case ...
 Case IN : q is put aside

 Case OUT and above :
Insertion in the superior
chain

 Case OUT and below :
insertion in the inferior chain

 Case OUT and neither
above or below : insertion
in both chains (at the
extremity)

q

q q

q q

49

CAD & Computational Geometry

Convex hull of a set of points

 Insertion in one of the chains (here the
superior chain)

 Find the edge e (of the vertex v) for which the
superior extension contains q

w is the vertex to the left of e or v

z is the vertex to the left of w
 While orientation(q,w,z) is in clockwise order

(or collinear)

Delete w
w=z

z= right neighbor of w
 Same thing on the other side (to the right)...
 Add q inside the chain.

(NB. For lisibility, I do not talk about special
cases, e.g. at the extremities...)

q

e
w

z

50

CAD & Computational Geometry

Convex hull of a set of points

 Complexity analysis (left as an exercise)

51

CAD & Computational Geometry

Convex hull of a set of points

 Tools : balanced binary tree (e.g. Red and Black
tree)

 Implementation available e.g. in the STL in C++ …
 This is a dynamic data structure with optimal

complexity bounds concerning insertion and
deletion (logarithmic...)

52

CAD & Computational Geometry

Convex hull of a set of points

 What happens when the data have a peculiar
structure ?

 One algorithm, which performs less well than optimal
algorithms (on the worse case) may be well above for
such special data

 Sometimes, testing is the only way to choose the
right algorithm for the right data.

This case is common This one is very rare (worse case)

53

CAD & Computational Geometry

Line intersections

Line intersections

54

CAD & Computational Geometry

Line intersections

Classical problem in GIS

Example :

One has access to several independent
maps :

 Forestry
 Wildlife
 etc...

One wishes to know every homogeneous
zones for every tuple of characteristics :

 e.g. deciduous forest & deer
pine forest & deer
pine forest & bears … and so forth.

55

CAD & Computational Geometry

Line intersections

 Types of data that are contained in maps :
 Towns (as points or polygons)
 Rivers, highways (networks, graphs)
 Wooden areas, or of a given climate (polygons)

 One needs to combine 2 or more of these
maps, therefore compute intersections

 Two maps with networks → points (bridges ?)
 Two maps with areas (zones) → new polygons
 Any combination...

 One common task (elementary task) is the
intersection between two sets of line
segments.

56

CAD & Computational Geometry

Line intersections

 Line segment intersection

Input data : Two sets of line segments

Output : Every intersection of segments of both sets
 On may, without loss of generality, merge the two sets

and compute the intersections from inside one lone set..
 It is easy to find the intersection between elements of the same

initial set : this may be filtered afterwards.

57

CAD & Computational Geometry

Line intersections

 Algorithm 1
 Brute force : take each pair of segment, and check

if they intersect each other

O(n²) !!!
 In some sense, this is optimal if a “high” number of

segments do intersect in many places (also in
O(n²))

 The algorithms computing this are necessary in

example :
2n segments
n² intersections

n2

58

CAD & Computational Geometry

 In practice, the number of intersections is generally
not in O(n²). The algorithme is therefore sub-
optimal in that case.

 One need to design a better algorithm
 Ideally, O(f(n,I))) with f(n,I) better than O(n²) when I is

O(n)
 Here, the expected complexity is depending on the input

data (i.e. the cardinaIity of the input set, n) , but also on
the cardinality of the output set (here, number of
intersections I)

 This is a case of algorithm that is sensitive on the output
data – this was not the case with the convex hull, for
which the cardinality of the output data was at most that
of the input data.

 How to avoid testing every pair of segments ?
 Make use of the geometric nature of the problem !

Line intersections

59

CAD & Computational Geometry

Line intersections

 Let , the set of all line segments.
 One may test only segments which have a non

disjoint projection onto the x axis

y

x

S={s1, s2, s3, ... , sn}

60

CAD & Computational Geometry

Line intersections
 In order to detect such pairs of segments that are

non x disjoint, lets define an imaginary line l
sweeping the domain from left to right

l

Event point

 The status of the line l is the set of
segments that intersect it

 It changes as the line moves
 For each event ; the status is updated

It is the only time we “do” something : add a
segment, perform some intersection tests,
remove a segment.

 If an event corresponds to a left extremity,
the we add the segment; we have to test
the intersection with all the segments that
are already present

 If an event is a “right” extremity, the
segment has to be deleted.

61

CAD & Computational Geometry

Line intersections

 One tests all segments present in the status. Is that
optimal ?

 No !

Here, a quadratic number of
pairs of segments are tested ...

62

CAD & Computational Geometry

Line intersections

 Lets sort the segments in the status, from bottom to
top

 This allows to check whether two segments are close in
the vertical direction

 Obviously, one tests only adjacent segments in this
setting.

 When a segment is added in the status, it is tested only
against the one immediately “below”, and the one “above”

 If an event is an intersection, one needs to swap the
segments... and test those with the new neighbors

 If an event amounts to delete
one segment from the status,
then the segments above
and below have to be tested
as they become neighbors

 Therefore, every “new”
adjacency is tested for a
potential intersection.

63

CAD & Computational Geometry

Line intersections

 Does it work ?
 One need to check that every intersection p can be

computed when an event is processed.
 Amounts to show that s

i
 abd s

j
 become adjacent

before the event p is processed.

 It is the case, because both segments are adjacent when
 p is processed ; but are not adjacent at the beginning
(before even one of s

i
 or s

j
 has been added). There exist

at least one event leading to the the new adjacency.

s
k

s
i

l

p

s
j

s
i

Here, s
i
 and s

j
 become adjacent when s

k
 is deleted

from the status

64

CAD & Computational Geometry

Line intersections

 In principle, the algorithm works, without taking care of
the degenerated and special cases.

 Intersections of 3 segments or more at the same place

 Vertical segments

 Overlapping segments

65

CAD & Computational Geometry

Line intersections

 « Invariant » of the algorithm : every intersection point to
the left of the imaginary line have been correctly
computed and processed.

66

CAD & Computational Geometry

Line intersections

 Data structures
 The events list F

 Sorted lexicographically in function of the coordinates of the point →
the special case of vertical segments is automatically solved. Same
structure as in the case of the convex hull.

 Each event has a specific “nature”
 “Left” point of a segment → segment added in the status
 “Right” point of a segment → segment deleted of the status
 Intersection point → swap the two segments

 The status T
 Segments are ordered along the line l
 Allows to efficiently look for segments that are contiguous to a given

event (e.g. sorted along y)
 Difficulty : the access key (y coordinate) changes when the line

moves …

67

CAD & Computational Geometry

Line intersections

 The Algorithms :
FindIntersections(S)
Input : Set of all line segments in the euclidean plane
Output : Set of all intersection points, with links to the associated line segments
{
 Initialize an empty events list F
 Insert the enpoints of all segments from S, into F.If the point is a left point, then a link to
the segment is attached to it .
 Initialize and empty Status T .
 While F is not empty
 {
 Find the next point p in F, delete it from F.
 ProcessEvent(p,T) // function call
 }
}

68

CAD & Computational Geometry

Line intersections

 ProcessEvent(p,T) must be able to respond correctly
to such degenerate cases :

l
s

1

s
2

s
3

s
5

s
4

s
6

s
2

s
1

T={s
5
, s

4
, s

3
, s

2
, s

1
} → T={s

5
, s

1
, s

2
, s

6
}

p

69

CAD & Computational Geometry

Line intersectionsProcessEvent(p,T)
{
 Let L(p) the set of all segments from which the left endpoint is p (those are known and stored with p)
 Find every segment in T that contain p : those are adjacent in T.
 Let R(p) be the subset of this set for which p is the right endpoint
 C(p) be the subset that contain p (i.e. p is in the interior of the segment, not at the end)
 If Union(L(p),R(p),C(p)) contains more than one segment
 { p is an intersection, link L(p),R(p) and C(p) to it }
 Delete all segments belonging to Union(R(p),C(p)) from T
 Insert all segments belonging to Union(L(p),C(p)) in T :
 the new ordering should correspond to the ordering when l is just at the right of p.
 If there is a vertical segment, it comes last.
 Note : the ordering among segments in C(p) is reversed...
 If Union(L(p),C(p)) is empty
 {
 Let s

u
 and s

d
 the neighbors above and below p in T

 FindEvent(s
u
, s

d
, p)

 }
 Else
 {
 Let s' the highest segment in Union(L(p),C(p))
 Let s

u
 the above neighboring segment to s' in T

 If s
u
 exists FindEvent(s

u
, s', p)

 Let s'' the lowest segment in Union(L(p),C(p))
 Let s

d
 the below neighboring segment in to s'' in T

 If s
d
 exists FindEvent(s'' , s

d
, p)

 }
}

l
s

1

s
2

s
3

s
5

s
4

s
6

s
2

s
1

p

C(p)

L(p)

R(p)

70

CAD & Computational Geometry

Line intersections

FindEvent(s
1
, s

2
, p)

{
 If s

1
 and s

2
 do intersect to the right of the imaginary line l, or on the line but above p

 And if the intersection is not already present in F
 Insert the intersection as a new event in F. Attach the lines to the new entry.
}

71

CAD & Computational Geometry

Line intersections

 Analysis of the algorithm
Does it find all intersections ?

 Poof by induction on the priority of the events
 One suppose that all events with higher priority than p in the

file are correctly processed.
 1st case : p is an extremity of one of the segments

It has been inserted into F at the beginning and therefore it is
the event file, with L(p), and R(p) et C(p) are in T when this
event is processed.

 2nd case : p is an intersection, need to prove that p has been
introduced in F some time before.

 Here, all segments that are concerned have p in their
interior (not at the extremities : this is case 1)

Let s
i
 and s

j
 two neighboring segments in T. The previous

proof (slide 63) allows to make sure that these segments
become neighbors at one point, and are tested for
intersection and p computed at a certain event q with higher
priority than p.

72

CAD & Computational Geometry

Line intersections

 Performance (in execution time) of the algorithm
 It can be proved that t=O((n+k) log n) with k = size of the output

 Building the event list : O(n log n)
 Processing of each event

 Insertions / deletions in F : log n each
 Insertions / deletions in T : log n each (worst case), but there

are less : let m(p)=Card(Union(L(p) , R(p) , C(p)))
Let m be the sum of all m(p), globally one have O(m log n)

Since m=O(n+k), k being the output size (segments + intersections)

one gets an O((n+k) log n) complexity.
 A stronger result can be proven : T=O((n+I) log n) with I = number of

intersection → considerations on planar graphs
 m is bounded by the sum of the degrees of each vertex
 Each edge contribute to the degree to maximum two vertices, so

m is bound by 2n
e
 (number of edges of the graph). n

v
 (number of

vertices) is at most 2n+I. Because of the Euler relation on a
planar graph, n

e
= O(n

v
), QED.

e
2

e
1

degree=4

73

CAD & Computational Geometry

Line intersections

 Euler relation … for planar graphs
 Every face in the graph is bound by at least three edges
 Each edge bounds at most two distinct faces
 Therefore, n

f
 ≤ 2n

e
/3

 Euler relation : n
v
– n

e
+n

f
 = r with r≥2

 r depends on the topological structure (nb of holes etc.). Here,
this is a constant.

One has therefore n
e
=O(n

v
).

74

CAD & Computational Geometry

Line intersections

 Memory performance of the algorithm
 T stores a most n segments , in a binary tree → O(n)
 The list F stores at most 2n +I events → O(n + I)
 So, finally, m=O(n+I)

If I = O(n²) , it is not very efficient. One does not always need to
store all intersections at once. One may process them one after
another (without storage), in that case it’s catastrophic.

It is possible to do better :
 Make sure that F contains only events (intersections) corresponding

to segments that are adjacent in T.
 Therefore, as soon as two segments are no more adjacent in T, the

corresponding event must be removed from F.
 Such an event may be added and removed multiple times

before being processed.
However, it never happens more than n times at all, so it does
not affect the bounds of the execution time t=O((n+I) log n)

 The list F therefore contains only O(n) elements at any given
time.

75

CAD & Computational Geometry

Line intersections

Briefly said :
 It is possible to compute intersections in a time t=O((n+I)

log n) and a memory footprint m=O(n)

This algorithm dates back to 1979 (with a later
modification to keep memory imprint in O(n))
J. L. Bentley and T. A. Ottmann , Algorithms for reporting and
counting geometric intersections, IEEE Trans. Comput., C-
28:643–647, 1979

 Is that optimal ?
No ! ... case where I=O(n²) : t=O(n² log n) , or it is
possible to achieve the same result in O(n²) - using the
naive brute force algorithm !!!

 The theoretical lower bound is T=Ω(n log n +k) – and
there exists a deterministic algorithm since (only) 1995
I. J. Balaban. An optimal algorithm for finding segment
intersections. In Proc. 11th Annu. ACM Sympos. Comput.
Geom., pages 211–219, 1995.

76

CAD & Computational Geometry

Line intersections

 Robustness ?
 As such, the algorithm is not robust because of the

floating point computations of intersections in finite
precision...

 It is possible that the (inaccurate) computation of an
intersection gives a point that is slightly to the left of l ,
but that this point has never been reported before (had
never been in F.)

 As a consequence, the intersection is not reported...

ε

2kε

l

77

CAD & Computational Geometry

Line intersections

 Solutions for robustness
 Work with exact input data (e.g. integer coordinates), and

compute intersections exactly as rational numbers
 May slow down quite heavily the computation

 Increase the precision of the numerical evaluations
 A naïve implementation (that is, as it is shown here) of

Bentley & Ottmann’s algorithme impose computations on 5n
bits for a result accurate on n bits
Boissonat & Preparata have shown that one may use only 2n
bits for the same final n bits by carefully arranging
computations.
See Boissonat, J.-D.; Preparata, F. P. (2000), Robust plane sweep
for intersecting segments, SIAM Journal on Computing 29 (5):
1401–1421

78

CAD & Computational Geometry

Floating point issues

 Numerical errors
 Floating point calculations are (most of the time)

inaccurate
 Analysis of the rounding done during operations in

floating point :

 Mathematically equivalent calculations but
expressed differently give distinct results

 An example with

x⊖ y=x− y 11 , ∣1∣≤2 
x⊕ y= x y 12 , ∣2∣≤2

x2− y2=x yx− y

x⊗ y= xy13 , ∣3∣≤

79

CAD & Computational Geometry

Floating point issues

 Error made with the expression

 No catastrophic increase of the relative error
 Error made with the expression

 When x is close to y, the error can be of the order
of magnitude of the calculated result...

x2− y2

(x⊗ x)⊖(y⊗ y) = [x2(1+ δ1)− y2(1+ δ2)](1+ δ3)
= ((x2− y2)(1+ δ1)+ (δ1−δ2) y2)(1+ δ3)

x yx− y
 x⊕ y⊗x⊖ y  =  x− y 11x y1213
=  x y  x− y 1123122313123
≈ 5

= ((x2− y2)(1+ δ1+ δ3+ (δ1−δ2) y2+ δ1δ3+ (δ1−δ2) y2δ3))

80

CAD & Computational Geometry

Floating point issues

 Some useful rules (not a comprehensive list !)
 Prefer to

 Lagrange form more accurate than horner's scheme …

 E. g. sum of many terms
 Naive algorithm :

involves an error
 Kahan's summation algorithm

involves an error

x2− y2x yx− y

S=0;
for (j=1;j<=N;j++){ S=S+X[j] ; }
return S ;

≈N 

S=X[1];C=0
for (j=2;j<=N;j++)
 { Y=X[j]-C; T=S+Y; C=(T-S)-Y; S=T }
return S ;

≈2 

S=∑
j=1

N

X [j]

81

CAD & Computational Geometry

Floating point issues

 Example of catastrophic rounding
 Computation of an integral :

S=∫
Ω

f (x , y)dxdy with f (x , y)=x2+ y2



x
y

S≈∑
i=0

nx−1

∑
j=0

ny−1

f  x i  , y  j det J

dx=xmax−xmin/nx
dy= ymax− ymin/ny

x i =xmini dxdx /2
y  j = ymin j dydy /2

det J=dx dy

nx*ny samples

x
min

x
max

y
min

y
max

82

CAD & Computational Geometry

Floating point issues

 Computations made with the following parameters:

x
min

= y
min

= 0.0 ; x
max

= y
max

= 1.0 ; nx = ny = 10, S
exact
=2/3

1) Single precision floating point numbers
2) Double precision floating point numbers
3) Quad precision floating point numbers
4) Single precision floating points numbers with Kahan's
summation algorithm

bechet@yakusa:floating_error$./test 10
1) sum (float)=0.66500002145767211914
2) sum (double)=0.66500000000000025757
3) sum (ldouble)=0.66499999999999999997
4) sum (kahan)=0.66499999999999999997

Note : Program should be compiled without
optimization !

83

CAD & Computational Geometry

Floating point issues

bechet@yakusa:floating_error$./test 100
1) sum (float)=0.66664981842041015625
2) sum (double)=0.66665000000000051994
3) sum (ldouble)=0.66665000000000000093
4) sum (kahan)=0.66664993762969970703

bechet@yakusa:floating_error$./test 1000
1) sum (float)=0.66668075323104858398
2) sum (double)=0.66666649999999805232
3) sum (ldouble)=0.66666649999999999982
4) sum (kahan)=0.66666668653488159180

84

CAD & Computational Geometry

Floating point issues

bechet@yakusa:floating_error$./test 10000
1) sum (float)=0.36836880445480346680
2) sum (double)=0.66666666499985449690
3) sum (ldouble)=0.66666666499999997623
4) sum (kahan)=0.66666656732559204102

bechet@yakusa:floating_error$./test 100000
1) sum (float)=0.00390625000000000000
2) sum (double)=0.66666666665538221181
3) sum (ldouble)=0.66666666665000055245
4) sum (kahan)=0.66666662693023681641

William Kahan. Further remarks on reducing truncation errors. Comm. ACM, 8(1):40,1965.

Compensated summation algorithm coming from :

85

CAD & Computational Geometry

Floating point issues

y=p(x)=(1-x)n
for x=1.333
and 2<n<41

S. Graillat, Ph.
Langlois, N.
Louvet
Compensated
Horner Scheme
Research Report
RR2005-04,
LP2A, University
of Perpignan,
France, july 2005

86

CAD & Computational Geometry

Floating point issues

 Definition of the condition number of a numerical
expression

 Ratio of the direct error to the inverse error

 For a polynomial

under monomial form:

K P , x=lim
 0

sup
 x∈D ∣ y∣

∣ x∣

K P , x=
∑i=0

n

∣ai∣∣x∣
i

∣∑i=0

n
ai x i∣

x y= p(x)

ỹ= p̃(x)= y+δ y
= p(x+δ x)

x+δ x

p

p̃

p

δ x

δ y
direct
error

inverse
error

87

CAD & Computational Geometry

Floating point issues

 There are various compensated algorithms to
carry out calculations on floating point
numbers.

 Ex. Kahan summation, Compensated Horner
scheme ...

 In general, they allow to have similar results
as when using internal floating point with a
precision twice that of the input data, following
by a final rounding.

 See references available on the course's
website for the compensated Horner scheme.

88

CAD & Computational Geometry

Line intersections

 Line sweep algorithms
An useful paradigm in many planar CG problems

 Segment intersection
 Voronoï diagrams
 Polygon triangulation

M. I. Shamos and D. Hoey. Geometric intersection problems.
In Proc. 17th Annu. IEEE Sympos. Found. Comput. Sci., pages
208–215, 1976.
D. T. Lee and F. P. Preparata. Location of a point in a planar
subdivision and its applications. SIAM J. Comput., 6:594–606,
1977.

and previous reference (J. L. Bentley and T. A. Ottmann)

89

CAD & Computational Geometry

Line intersections

 Exercise :
Find an incremental algorithm for the intersection of
segments ...

90

CAD & Computational Geometry

 Two other exercises
 Find in t=O(nlogn) the segments (disjoint

segments) that are visible from one point..

Non visible

Sweep line paradigm

91

CAD & Computational Geometry

Sweep line paradigm

 Link a set of n disjoint triangles
 Every segment joints two triangles
 The segments should not intersect, except at extremities)

and should not intersect triangles (connected at exactly
one point)

