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CAD & Computational Geometry

Outline

 Interpolation and polynomial approximation
 Interpolation

 Lagrange
 Cubic Splines

Approximation
 Bézier curves
 B-Splines
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CAD & Computational Geometry

Outline

 Approximation
 Bézier curves
 B-Splines
 We still focus on curves for the moment.
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Bézier curves
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Bézier curves

 Bézier curves
 Pierre Bézier (1910-1999)
 Develops UNISURF – 

first surface modelling software 
at Renault's (1971)

 Publicizes the theory under his name in 1962... 
however, the principle was discovered in 1959 by 
Paul de Casteljau (at Citroën's) ! Because of the 
“culture of secret” at Citroën, De Casteljau will have 
his works recognized only in 1975.
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Bézier curves

 Use of Bézier curves :
 Postscript fonts (cubic Bézier) & TrueType 

(quadratic Bézier)

 Computer graphics
 In geometrical modeling and CAD, they tend to be 

replaced by more general techniques (NURBS, 
a.k.a B-Splines in homogeneous coordinates)

AaBbCc
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Bézier curves

 Modelling by interpolation is not very practical
 We seldom have interpolation points at our hand 

 Instead, we hope to define these points as the result of a 
modeling process instead of as an input data

 Approximation gives more freedom in the design of 
the curve



7

CAD & Computational Geometry

Bézier curves

 Elements of a Bézier curve :

n=d+1 control points

Bézier curve

Control Polygon 
with d=n-1 sides 

(also called  
characteristic 

polygon)

For Bézier curves, the 
notion of knot is 
trivial :

u0=0 u1=1
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Bézier curves

 Characteristics of Bézier curves 
 More freedom than interpolation

 Any degree
 Precise control of the curve's shape
 Numerical stability even with high degree (not as Lagrange !)

 The            are Bernstein polynomials (Sergei N. Bernstein, 
1880-1968  - don't mistake for Leonard Bernstein...:) :

 They form a complete polynomial basis
 They are a partition of the unity
 Sometimes called ‘blending functions’
 The curve is described as one polynomial (unlike splines)

P (u)=∑
i=0

d

P i Bi
d (u)

Bi
d u 
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Bézier curves

 Bernstein polynomials

Bi
d u=di ui 1−ud −i

Binomial coefficients
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Bézier curves

 Binomial coefficients : computed with Pascal's 
triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 2 3 4 5

d=0

1

2

3

4

5

d
i  d

i = d !
d−i ! i !

(di )=(d−1
i )+(d−1

i−1 )

i=0
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Bézier curves

 Bernstein polynomials

 By design, they form a partition of unity...

Bi
d (u)=(di )ui (1−u)d −i

1

Binomial coefficients

=∑
i=0

d

Bi
d (u)

=∑
i=0

d

(d
i )Ai Bd−i=[(1−u)+u ]d=[ A+B ]d =∑

i=0

d

(d
i )ui (1−u)d−i
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Bézier curves

 Some characteristics of the B. polynomials.
           
       
           has a root of multiplicity i for u=0
           has a root of multiplicity d-i for u=1
                                         
                           (symmetry of the basis)     
     
 If i≠0,            has a unique maximum at u=i/d

Bi
d (u)=0  if i< 0  or i> d

Bi
d (0)=δi 0  and Bi

d (1)=δi d

Bi
d u

Bi
d (u)≥0  for u∈[0,1]

Bi
d u

Bi
d (1−u)=Bd−i

d (u)

Bi
' d=d  Bi−1

d −1u−Bi
d−1u 

Bi
d u

Bi
d (i /d )=i i d−d (d−i)(d−i )(d

i )
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Bézier curves

 Recurrence relations of Bernstein's basis

... but no practical interest other than demonstrating algebraic 
relations (cf. following)

 These polynomials are usually not computed 
explicitly

Bi
d u=1−uBi

d−1uu Bi−1
d−1u

Bd
d u=u Bd−1

d−1u B0
d u=1−uB0

d−1u
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Bézier curves

 Degree 4
 No negative values

Therefore, no value 
above 1!
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Bézier curves

 Degree 20
 No extreme values

 Existence of a limit 
envelope

e (u)= 1

√2d πu(1−u)

e (u)
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Bézier curves

 The characteristics of Bernstein polynomials 
involve that the Bézier curve

  :
 interpolates P

0
 and P

d
 ,

 is invariant by affine transformations ,
 is contained in the convex 

hull of its control points
(because P(u) is a combination 
with positive coefficients of 
control points – also called 
convex combination) ,

P u=∑
i=0

d

Pi Bi
d u
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Bézier curves

(following)
 is variation diminishing : the curve has less inflexion 

points (wiggles) than there are undulations of the 
characteristic polynomial (proof by the fact that a 
Bézier curve is obtained by recursive subdivision, 
see further) ,

 delimits a closed convex domain if the control 
polygon itself is convex and closed... , 

 Its length is smaller than that of the control polygon.
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Bézier curves

 Same examples as shown earlier on Lagrange 
interpolation

 Circle with an increasing number of points
 Perturbation of the control points
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Bézier curves

Degree 2
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Bézier curves

Degree 4
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Bézier curves

Degree 10
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Bézier curves

Degree 20
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Bézier curves

 When the number of control points increases, the 
curve tends to the control polygon (under the 
assumption that the control polygon itself converges 
to a smooth curve ... )

 The approximation involves a substantial error 
between the curve and the control points

 However, an interpolation is not the objective here...
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Bézier curves

 Perturbation of a point
 We shift the indicated point 
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Bézier curves

Degree 4
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Bézier curves

Degree 10
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Bézier curves

Degree 20
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Bézier curves

 Editing Bézier curves
 Degree elevation
 Computation of points on the curve (De Casteljau's 

algorithm and others )
 Changing the range of a curve

 Cutting, extension
 Curves defined by pieces and recursive subdivision
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 Degree elevation
 A curve of degree d+1 is able to represent any 

curve of degree d 
 If there aren't enough control points to design a 

given shape, the degree may be increased...
 New control points must be determined  (one more !)
 Forrest's equations [1972] 

Q0=P0

Q i=
i

d +1
P i−1+(1− i

d+1
) Pi  for i=1,⋯ , d

Qd 1=P d

Bézier curves
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Bézier curves

 Degree elevation in practice ...

Degree 4



31

CAD & Computational Geometry

Bézier curves

Degree 5
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Bézier curves

Degree 6
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Bézier curves

Degree 7
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Bézier curves

Degree 8
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Bézier curves

Degree 9
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Bézier curves

Degree 21
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Bézier curves

 De Casteljau's algorithm
 Allows the robust construction of points on the 

curve
 Very simple geometrical interpretation
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Bézier curves

 Principle of De Casteljau's algorithm
 Construction of the centroids        of the control 

points      :
 We continue with         ....

 As far as possible, until only one control point remains,
That control point is P(u).

P i
0

P i
1

P i
1=(1−u) P i

0+u P i+1
0

P i
2

P0
d



39

CAD & Computational Geometry

Bézier curves

 Kig

../../CAO/cours3/bezier.kig
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Bézier curves

 The algorithm is  :

 What is its complexity ?
 Consists of 3d(d+1) multiplications

and 3d(d+1)/2 additions , so quadratic with respect 
of the the degree d.

Initialization of 
For j from 1 to d
  For i from 0 to d-j

  EndFor
EndFor
     is the point we want.

P i
j=1−u Pi

j−1u Pi1
j−1

P0
d

P i
0
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Bézier curves

 Restriction of a curve (cutting)
 Let us compute the intersection of two curves

 We need a independent representation of each segment
 One wants 0<u<1 on each segment
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Bézier curves

 Let us start from De Casteljau's geometrical 
construction
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Bézier curves

 Let us start from De Casteljau's geometrical 
construction

 The control polygon of the both parts is obtained 
from points coming from De Casteljau's algorithm !
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Bézier curves

 Recursive subdivision
 Allows to draw the curve quickly with the help of De 

Casteljau's algorithm
 Idea : splitting up the curve in two parts at u=0.5, then 

these sub-curves in four parts ( still for u*=0.5) and so on.
 The control points of the sub-curves are obtained like a 

residual of the De Casteljau algorithm at each step
 The control points quickly converge toward the curve
 When the gap between the starting and ending points of 

each sub-curves is lower than a factor (depends on the 
resolution), we join simply the points of the characteristic 
polygon by straight line segments.

 It's a « divide and conquer » approach – a famous 
paradigm in software engineering. 
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Bézier curves

0 subdivision

2 subdivisions

4 subdivisions

8 subdivisions

16 subdivisions

32 subdivisions
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Bézier curves

 Cost of the recursive subdivision algorithm
 In     for m levels of subdivision
 Number of generated points: 
 For each point that is generated, the algorithm 

becomes linear…
 It is not very accurate, nevertheless very robust.

O d 2⋅2m
d⋅2m
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Partition of unity and affine invariance

 Property of affine invariance
 It is a useful property such that the curves we 

define for a set of control points can undergo linear 
affine transformations without hassle.

 Let P
i
* the affine transformation of the control points P

i

 Let  P*(u,P
i
) the affine transformation of the points of the 

curve P(u,P
i
) defined from the original points P

i

 Let  P(u,P
i
*) the new curve based on the modified control 

points P
i
* , with the same parametrization.

 The affine invariance is verified iff P*(u,P
i
) = P(u,P

i
*) 

for all u.
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Partition of unity and affine invariance

 Affine transformations 

Translation

Scaling

3 rotations

Shear

 12 degrees of freedom

P ≡A⋅Pu

u=[abc ] ; A=[1 0 0
0 1 0
0 0 1 ]

u=0 ; A=[d 0 0
0 e 0
0 0 f ]

u=0 ; A=[cos −sin 0
sin cos 0

0 0 1]⋯u=0 ; A=[1 g h
0 1 i
0 0 1]
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Partition of unity and affine invariance

Let P a parametric curve built this way :

 Let's verify the invariance by a translation t:

P (u , Pi)=∑
0

n−1

P i K i
n (u)

P (u , Pi
*)=∑

0

n−1

(P i+t) K i
n(u)=∑

0

n−1

P i K i
n(u)+∑

0

n−1

t K i
n(u)

=P (u , P i)+∑
0

n−1

t K i
n(u)

=P (u , P i)+t=P*(u , Pi)  iff ∑
0

n−1

K i
n(u)=1

Partition of unity



50

CAD & Computational Geometry

Partition of unity and affine invariance

 For the other multiplicative transformations

Consequently,  iff the basis functions form a partition of unity, 
and the dependence with respect to the control points is 
linear, then the representation is invariant by any affine 
transformation.

P (u , Pi
*)=∑

0

n−1

(A⋅P i) K i
n (u)=A⋅∑

0

n−1

P i K i
n(u)

=A⋅P (u , P i)=P*(u , P i)
(no particular conditions except linearity 
with respect to the coordinates of the control points)
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Partition of unity and affine invariance

 Case of splines : we had on each interval :

 By rearranging equations

{a[i ]0=xi

a[i ]1=x i
'

a[i ]2=3 xi1−x i−2 xi
' −x i1

'

a[i ]3=2xi−x i1xi
'x i1

'

x [i ]u=xix i
'
u3x i1−x i−2 x i

'−xi1
'  u

22 xi−x i1xi
'x i1

' u
3

x [i ]u=xi 1−3u
22u

3x i
' u−2u

2u
3

x i13u2−2 u3xi1
' −u2u3
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Partition of unity and affine invariance

 In fact, we use Hermite polynomials (for two 
points), on each interval

{h00
p =1−3u22u3

h10
p =3u

2−2u
3

h01
p =u−2u2u3

h11
p =−u2u3
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Partition of unity and affine invariance

 Properties of the Hermite basis

hi0
n u j= ij

hi0
n 'u j=0

hi1
n 'u j=ij

hi1
n u j=0

∑
i

hi0
n u=1

Interpolation 
of the 
positions

Interpolation 
of the slopes
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Partition of unity and affine invariance

 Do Hermite's basis form a partition of unity ?

∑
0

n−1

h??
n u=1 {h00

p =1−3u22u3

h10
p =3u

2−2u
3

h01
p =u−2u2u3

h11
p =−u2u3F u=1

F 0=1
F 1=1 F ' 0=0

F ' 1=0
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 Let's check the invariance 
 If we apply a translation to the control points P

i
, the 

derivatives P
i
' should not change ...

P (Pi
*)=∑

0

1

(P i+t )hi0
n (u)+∑

0

1

Pi
' hi1

n (u)

=∑
0

1

thi0
n (u)+∑

0

1

P i hi0
n (u)+∑

0

1

P i
' hi1

n (u)

=t+P (P i)=P*(P i)

P i
*=P i+t P i

' *=P i
'

Partition of unity and affine invariance
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Partition of unity and affine invariance

 We must also check the invariance for the other 
multiplicative transformations : those affect both 
the coordinates and the derivatives

P P i
*=∑

0

1

 A⋅P ihi0
n u∑

0

1

 A⋅Pi
' hi1

n u

P i
*=A⋅P i P i

' *=A⋅P i
'

=A⋅∑
0

1

P i hi0
n u∑

0

1

P i
' hi1

n u
=A⋅P (P i)=P*(P i)

QED
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Partition of unity and affine invariance

 Beware of the computation of the slopes x'
i
 ...

 Natural Splines : 

2 1
1 4 1

1 4 1
⋱
1 4 1

1 2
 

x0
'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

=
3x1−x0
3 x2−x0
3x3−x1

⋮
3xn−1−xn−3
3 xn−1−xn−2


P i

'=L(P i−P j)⇒ P i
' *=L(P i

*−P j
*)=L((A⋅Pi+t)−( A⋅P j+t))

                           =A⋅L(P i−P j)=A⋅Pi
'

Linear operator

It is OK in this case
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Partition of unity and affine invariance

 Rotation of 45°
 Scaling x direction 

(times 0.5)
 Followed by a 

translation


