
1

CAD & Computational Geometry

Outline

 Interpolation and polynomial approximation
 Interpolation

 Lagrange
 Cubic Splines

Approximation
 Bézier curves
 B-Splines

2

CAD & Computational Geometry

Outline

 Approximation
 Bézier curves
 B-Splines
 We still focus on curves for the moment.

3

CAD & Computational Geometry

Bézier curves

4

CAD & Computational Geometry

Bézier curves

 Bézier curves
 Pierre Bézier (1910-1999)
 Develops UNISURF –

first surface modelling software
at Renault's (1971)

 Publicizes the theory under his name in 1962...
however, the principle was discovered in 1959 by
Paul de Casteljau (at Citroën's) ! Because of the
“culture of secret” at Citroën, De Casteljau will have
his works recognized only in 1975.

5

CAD & Computational Geometry

Bézier curves

 Use of Bézier curves :
 Postscript fonts (cubic Bézier) & TrueType

(quadratic Bézier)

 Computer graphics
 In geometrical modeling and CAD, they tend to be

replaced by more general techniques (NURBS,
a.k.a B-Splines in homogeneous coordinates)

AaBbCc

6

CAD & Computational Geometry

Bézier curves

 Modelling by interpolation is not very practical
 We seldom have interpolation points at our hand

 Instead, we hope to define these points as the result of a
modeling process instead of as an input data

 Approximation gives more freedom in the design of
the curve

7

CAD & Computational Geometry

Bézier curves

 Elements of a Bézier curve :

n=d+1 control points

Bézier curve

Control Polygon
with d=n-1 sides

(also called
characteristic

polygon)

For Bézier curves, the
notion of knot is
trivial :

u0=0 u1=1

8

CAD & Computational Geometry

Bézier curves

 Characteristics of Bézier curves
 More freedom than interpolation

 Any degree
 Precise control of the curve's shape
 Numerical stability even with high degree (not as Lagrange !)

 The are Bernstein polynomials (Sergei N. Bernstein,
1880-1968 - don't mistake for Leonard Bernstein...:) :

 They form a complete polynomial basis
 They are a partition of the unity
 Sometimes called ‘blending functions’
 The curve is described as one polynomial (unlike splines)

P (u)=∑
i=0

d

P i Bi
d (u)

Bi
d u 

9

CAD & Computational Geometry

Bézier curves

 Bernstein polynomials

Bi
d u=di ui 1−ud −i

Binomial coefficients

10

CAD & Computational Geometry

Bézier curves

 Binomial coefficients : computed with Pascal's
triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 2 3 4 5

d=0

1

2

3

4

5

d
i  d

i = d !
d−i ! i !

(di)=(d−1
i)+(d−1

i−1)

i=0

11

CAD & Computational Geometry

Bézier curves

 Bernstein polynomials

 By design, they form a partition of unity...

Bi
d (u)=(di)ui (1−u)d −i

1

Binomial coefficients

=∑
i=0

d

Bi
d (u)

=∑
i=0

d

(d
i)Ai Bd−i=[(1−u)+u]d=[A+B]d =∑

i=0

d

(d
i)ui (1−u)d−i

12

CAD & Computational Geometry

Bézier curves

 Some characteristics of the B. polynomials.


 has a root of multiplicity i for u=0
 has a root of multiplicity d-i for u=1

 (symmetry of the basis)

 If i≠0, has a unique maximum at u=i/d

Bi
d (u)=0 if i< 0 or i> d

Bi
d (0)=δi 0 and Bi

d (1)=δi d

Bi
d u

Bi
d (u)≥0 for u∈[0,1]

Bi
d u

Bi
d (1−u)=Bd−i

d (u)

Bi
' d=d  Bi−1

d −1u−Bi
d−1u 

Bi
d u

Bi
d (i /d)=i i d−d (d−i)(d−i)(d

i)

13

CAD & Computational Geometry

Bézier curves

 Recurrence relations of Bernstein's basis

... but no practical interest other than demonstrating algebraic
relations (cf. following)

 These polynomials are usually not computed
explicitly

Bi
d u=1−uBi

d−1uu Bi−1
d−1u

Bd
d u=u Bd−1

d−1u B0
d u=1−uB0

d−1u

14

CAD & Computational Geometry

Bézier curves

 Degree 4
 No negative values

Therefore, no value
above 1!

15

CAD & Computational Geometry

Bézier curves

 Degree 20
 No extreme values

 Existence of a limit
envelope

e (u)= 1

√2d πu(1−u)

e (u)

16

CAD & Computational Geometry

Bézier curves

 The characteristics of Bernstein polynomials
involve that the Bézier curve

 :
 interpolates P

0
 and P

d
 ,

 is invariant by affine transformations ,
 is contained in the convex

hull of its control points
(because P(u) is a combination
with positive coefficients of
control points – also called
convex combination) ,

P u=∑
i=0

d

Pi Bi
d u

17

CAD & Computational Geometry

Bézier curves

(following)
 is variation diminishing : the curve has less inflexion

points (wiggles) than there are undulations of the
characteristic polynomial (proof by the fact that a
Bézier curve is obtained by recursive subdivision,
see further) ,

 delimits a closed convex domain if the control
polygon itself is convex and closed... ,

 Its length is smaller than that of the control polygon.

18

CAD & Computational Geometry

Bézier curves

 Same examples as shown earlier on Lagrange
interpolation

 Circle with an increasing number of points
 Perturbation of the control points

19

CAD & Computational Geometry

Bézier curves

Degree 2

20

CAD & Computational Geometry

Bézier curves

Degree 4

21

CAD & Computational Geometry

Bézier curves

Degree 10

22

CAD & Computational Geometry

Bézier curves

Degree 20

23

CAD & Computational Geometry

Bézier curves

 When the number of control points increases, the
curve tends to the control polygon (under the
assumption that the control polygon itself converges
to a smooth curve ...)

 The approximation involves a substantial error
between the curve and the control points

 However, an interpolation is not the objective here...

24

CAD & Computational Geometry

Bézier curves

 Perturbation of a point
 We shift the indicated point

25

CAD & Computational Geometry

Bézier curves

Degree 4

26

CAD & Computational Geometry

Bézier curves

Degree 10

27

CAD & Computational Geometry

Bézier curves

Degree 20

28

CAD & Computational Geometry

Bézier curves

 Editing Bézier curves
 Degree elevation
 Computation of points on the curve (De Casteljau's

algorithm and others)
 Changing the range of a curve

 Cutting, extension
 Curves defined by pieces and recursive subdivision

29

CAD & Computational Geometry

 Degree elevation
 A curve of degree d+1 is able to represent any

curve of degree d
 If there aren't enough control points to design a

given shape, the degree may be increased...
 New control points must be determined (one more !)
 Forrest's equations [1972]

Q0=P0

Q i=
i

d +1
P i−1+(1− i

d+1
) Pi for i=1,⋯ , d

Qd 1=P d

Bézier curves

30

CAD & Computational Geometry

Bézier curves

 Degree elevation in practice ...

Degree 4

31

CAD & Computational Geometry

Bézier curves

Degree 5

32

CAD & Computational Geometry

Bézier curves

Degree 6

33

CAD & Computational Geometry

Bézier curves

Degree 7

34

CAD & Computational Geometry

Bézier curves

Degree 8

35

CAD & Computational Geometry

Bézier curves

Degree 9

36

CAD & Computational Geometry

Bézier curves

Degree 21

37

CAD & Computational Geometry

Bézier curves

 De Casteljau's algorithm
 Allows the robust construction of points on the

curve
 Very simple geometrical interpretation

38

CAD & Computational Geometry

Bézier curves

 Principle of De Casteljau's algorithm
 Construction of the centroids of the control

points :
 We continue with

 As far as possible, until only one control point remains,
That control point is P(u).

P i
0

P i
1

P i
1=(1−u) P i

0+u P i+1
0

P i
2

P0
d

39

CAD & Computational Geometry

Bézier curves

 Kig

../../CAO/cours3/bezier.kig

40

CAD & Computational Geometry

Bézier curves

 The algorithm is :

 What is its complexity ?
 Consists of 3d(d+1) multiplications

and 3d(d+1)/2 additions , so quadratic with respect
of the the degree d.

Initialization of
For j from 1 to d
 For i from 0 to d-j

 EndFor
EndFor
 is the point we want.

P i
j=1−u Pi

j−1u Pi1
j−1

P0
d

P i
0

41

CAD & Computational Geometry

Bézier curves

 Restriction of a curve (cutting)
 Let us compute the intersection of two curves

 We need a independent representation of each segment
 One wants 0<u<1 on each segment

42

CAD & Computational Geometry

Bézier curves

 Let us start from De Casteljau's geometrical
construction

43

CAD & Computational Geometry

Bézier curves

 Let us start from De Casteljau's geometrical
construction

 The control polygon of the both parts is obtained
from points coming from De Casteljau's algorithm !

44

CAD & Computational Geometry

Bézier curves

 Recursive subdivision
 Allows to draw the curve quickly with the help of De

Casteljau's algorithm
 Idea : splitting up the curve in two parts at u=0.5, then

these sub-curves in four parts (still for u*=0.5) and so on.
 The control points of the sub-curves are obtained like a

residual of the De Casteljau algorithm at each step
 The control points quickly converge toward the curve
 When the gap between the starting and ending points of

each sub-curves is lower than a factor (depends on the
resolution), we join simply the points of the characteristic
polygon by straight line segments.

 It's a « divide and conquer » approach – a famous
paradigm in software engineering.

45

CAD & Computational Geometry

Bézier curves

0 subdivision

2 subdivisions

4 subdivisions

8 subdivisions

16 subdivisions

32 subdivisions

46

CAD & Computational Geometry

Bézier curves

 Cost of the recursive subdivision algorithm
 In for m levels of subdivision
 Number of generated points:
 For each point that is generated, the algorithm

becomes linear…
 It is not very accurate, nevertheless very robust.

O d 2⋅2m
d⋅2m

47

CAD & Computational Geometry

Partition of unity and affine invariance

 Property of affine invariance
 It is a useful property such that the curves we

define for a set of control points can undergo linear
affine transformations without hassle.

 Let P
i
* the affine transformation of the control points P

i

 Let P*(u,P
i
) the affine transformation of the points of the

curve P(u,P
i
) defined from the original points P

i

 Let P(u,P
i
*) the new curve based on the modified control

points P
i
* , with the same parametrization.

 The affine invariance is verified iff P*(u,P
i
) = P(u,P

i
*)

for all u.

48

CAD & Computational Geometry

Partition of unity and affine invariance

 Affine transformations

Translation

Scaling

3 rotations

Shear

 12 degrees of freedom

P ≡A⋅Pu

u=[abc] ; A=[1 0 0
0 1 0
0 0 1]

u=0 ; A=[d 0 0
0 e 0
0 0 f]

u=0 ; A=[cos −sin 0
sin cos 0

0 0 1]⋯u=0 ; A=[1 g h
0 1 i
0 0 1]

49

CAD & Computational Geometry

Partition of unity and affine invariance

Let P a parametric curve built this way :

 Let's verify the invariance by a translation t:

P (u , Pi)=∑
0

n−1

P i K i
n (u)

P (u , Pi
*)=∑

0

n−1

(P i+t) K i
n(u)=∑

0

n−1

P i K i
n(u)+∑

0

n−1

t K i
n(u)

=P (u , P i)+∑
0

n−1

t K i
n(u)

=P (u , P i)+t=P*(u , Pi) iff ∑
0

n−1

K i
n(u)=1

Partition of unity

50

CAD & Computational Geometry

Partition of unity and affine invariance

 For the other multiplicative transformations

Consequently, iff the basis functions form a partition of unity,
and the dependence with respect to the control points is
linear, then the representation is invariant by any affine
transformation.

P (u , Pi
*)=∑

0

n−1

(A⋅P i) K i
n (u)=A⋅∑

0

n−1

P i K i
n(u)

=A⋅P (u , P i)=P*(u , P i)
(no particular conditions except linearity
with respect to the coordinates of the control points)

51

CAD & Computational Geometry

Partition of unity and affine invariance

 Case of splines : we had on each interval :

 By rearranging equations

{a[i]0=xi

a[i]1=x i
'

a[i]2=3 xi1−x i−2 xi
' −x i1

'

a[i]3=2xi−x i1xi
'x i1

'

x [i]u=xix i
'
u3x i1−x i−2 x i

'−xi1
'  u

22 xi−x i1xi
'x i1

' u
3

x [i]u=xi 1−3u
22u

3x i
' u−2u

2u
3

x i13u2−2 u3xi1
' −u2u3

52

CAD & Computational Geometry

Partition of unity and affine invariance

 In fact, we use Hermite polynomials (for two
points), on each interval

{h00
p =1−3u22u3

h10
p =3u

2−2u
3

h01
p =u−2u2u3

h11
p =−u2u3

53

CAD & Computational Geometry

Partition of unity and affine invariance

 Properties of the Hermite basis

hi0
n u j= ij

hi0
n 'u j=0

hi1
n 'u j=ij

hi1
n u j=0

∑
i

hi0
n u=1

Interpolation
of the
positions

Interpolation
of the slopes

54

CAD & Computational Geometry

Partition of unity and affine invariance

 Do Hermite's basis form a partition of unity ?

∑
0

n−1

h??
n u=1 {h00

p =1−3u22u3

h10
p =3u

2−2u
3

h01
p =u−2u2u3

h11
p =−u2u3F u=1

F 0=1
F 1=1 F ' 0=0

F ' 1=0

55

CAD & Computational Geometry

 Let's check the invariance
 If we apply a translation to the control points P

i
, the

derivatives P
i
' should not change ...

P (Pi
*)=∑

0

1

(P i+t)hi0
n (u)+∑

0

1

Pi
' hi1

n (u)

=∑
0

1

thi0
n (u)+∑

0

1

P i hi0
n (u)+∑

0

1

P i
' hi1

n (u)

=t+P (P i)=P*(P i)

P i
*=P i+t P i

' *=P i
'

Partition of unity and affine invariance

56

CAD & Computational Geometry

Partition of unity and affine invariance

 We must also check the invariance for the other
multiplicative transformations : those affect both
the coordinates and the derivatives

P P i
*=∑

0

1

 A⋅P ihi0
n u∑

0

1

 A⋅Pi
' hi1

n u

P i
*=A⋅P i P i

' *=A⋅P i
'

=A⋅∑
0

1

P i hi0
n u∑

0

1

P i
' hi1

n u
=A⋅P (P i)=P*(P i)

QED

57

CAD & Computational Geometry

Partition of unity and affine invariance

 Beware of the computation of the slopes x'
i
 ...

 Natural Splines :

2 1
1 4 1

1 4 1
⋱
1 4 1

1 2
 

x0
'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

=
3x1−x0
3 x2−x0
3x3−x1

⋮
3xn−1−xn−3
3 xn−1−xn−2


P i

'=L(P i−P j)⇒ P i
' *=L(P i

*−P j
*)=L((A⋅Pi+t)−(A⋅P j+t))

 =A⋅L(P i−P j)=A⋅Pi
'

Linear operator

It is OK in this case

58

CAD & Computational Geometry

Partition of unity and affine invariance

 Rotation of 45°
 Scaling x direction

(times 0.5)
 Followed by a

translation

