o HE&E CAD & Computational Geometry
) Outline

= Interpolation and polynomial approximation

= Interpolation

= Lagrange

= Cubic Splines
Approximation

= Bézier curves
= B-Splines

y LlEGtE CAD & Computational Geometry
< universite
Outline

= Approximation
= Bezier curves
= B-Splines
= We still focus on curves for the moment.

:ﬁ uLnI.EgE CAD & Computational Geometry

Bézier curves

4» llfnl.\EgE CAD & Computational Geometry
Bézier curves

= Bézier curves

= Pierre Bézier (1910-1999)
= Develops UNISURF —

first surface modelling software
at Renault's (1971) _

= Publicizes the theory under his name in 1962...
however, the principle was discovered in 1959 by
Paul de Casteljau (at Citroen's) ! Because of the
“culture of secret” at Citroen, De Casteljau will have
his works recognized only in 1975.

4» HEEE CAD & Computational Geometry
Bézier curves

= Use of Bézier curves :

= Postscript fonts (cubic Bézier) & TrueType
(quadratic Bezier)

AaBbC(Cc

= Computer graphics

= In geometrical modeling and CAD, they tend to be
replaced by more general techniques (NURBS,
a.k.a B-Splines in homogeneous coordinates)

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Modelling by interpolation is not very practical

= WWe seldom have interpolation points at our hand

= Instead, we hope to define these points as the result of a
modeling process instead of as an input data

= Approximation gives more freedom in the design of
the curve

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Elements of a Bézier curve :

) For Bézier curves, the
n=d+1 control points

notion of knot 1s
C “ trivial :

ontrol Polygon SN
with d=n-1 sides / \ o u,=0 u =1
\
(also called N . |
characteristic /] /
polygon) ‘/ \ !
4 \ /
d

Bézier curve

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Characteristics of Bézier curves

= More freedom than interpolation
= Any degree
= Precise control of the curve's shape
- Numericgl stability even with high degree (not as Lagrange !)

P(”):Z PiBfl(”)

= The Bf@o) are Bernstein polynomials (Sergei N. Bernstein,
1880-1968 - don't mistake for Leonard Bernstein...:) :

= They form a complete polynomial basis

= They are a partition of the unity

= Sometimes called ‘blending functions’

= The curve is described as one polynomial (unlike splines) s

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Bernstein polynomials

uz’(l_u)d—i

Binomial coefficients

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Binomial coefficients : computed with Pascal's

triangle
=()

| Rl

| | I I i—1
T (d): d!

| 2 | i (d—i)!i!

| 3 3 |

| 4 6 4 |

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Bernstein polynomials

Binomial coefficients

d

1:[(1—u)+u]d:[A+B]d:Zd: (‘?)A"B“:Z

ui(l_u)d—i
i=0 \ ! i=0
)

ZBf(u

d
i=0

d

l

= By design, they form a partition of unity...

11

université

4» ¢ LIEGE CAD & Computational Geometry

Bézier curves

= Some characteristics of the B. polynomials.

B (u)=0 if i< 0 or i>d
O) 6zO and B () 61d
u) has a root of multiplicity i for u=0

u)>0 for ue|0,1]
"(1—u)=BY _,(u) (symmetry of the basis)
B'=d|B" (u)- B! (u))

l

B
! (u)
() has a root of multiplicity d-i for u=1
¢ (u)
f(

If 20, B¢(u)has a unique maximum at u=i/d
Bl(ild)=i'd “(d—i)"™" d)
l 12

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Recurrence relations of Bernstein's basis

B (u)=(1-u) B! (u)+u B ()

l

B4 (u)=uB4 | (u) Bi(u)=(1—u)B, ' (u)

... but no practical interest other than demonstrating algebraic
relations (cf. following)

= These polynomials are usually not computed
explicitly

13

université

:»» LIEGE CAD & Computational Geometry
Bézier curves

1 I 1 I |

= Degree 4
= No negative values

Therefore, no value
above 1!

o uLnI.EgE CAD & Computational Geometry
Bézier curves

1 I 1 I |

= Degree 20 I\
= No extreme values

08 H M

= Existence of a limit e(“) |
envelope

e(u)

:\/2dnu(1—u) |

s
A b
T
! i
Y
[
]
i
I h i
! 1
' B
] A ! |
: IL'- ! b
I Y i]
i - i
” - I
-II _.J M . L= - .-Td ' .lll § |" !
02 i Son ¥ e - -, i L -
f ¥ . kY . v, ML = — P # " %) 1 |
I o T T i, e T s " i
| - v P e e N A ~
I P A) ol WK A " N o !
; - AL A - -
! SONS Y -) SN T N Aoow AT
] ! o . LA . S . R IS " R . ’
I: p N " Va Lt A mooM , £ S v Y
. £ o y R N el o ¥ v » AN 5,
I: —."I :\\ » e \\-;‘. \'-;'. R \"\“’r - }”:' n .
PR N N e L el T S LN
e . - I '-'_'_: L . . = - T . -
0 - i it _"'J---‘_"'-“-h-—"‘"":—-lz—' T T L N — Sl 3 e - I

<

o HE&E CAD & Computational Geometry
Bézier curves

= The characteristics of Bernstein polynomials
involve that the Bezier curve

P(u):; PiB?(“):

= interpolates P, and P_,

= is invariant by affine transformations ,

= |s contained in the convex
hull of its control points
(because P(u) is a combination
with positive coefficients of
control points — also called
convex combination) ,

16

<

o HEEE CAD & Computational Geometry
Bézier curves

(following)

= |s variation diminishing : the curve has less inflexion
points (wiggles) than there are undulations of the
characteristic polynomial (proof by the fact that a
Bézier curve is obtained by recursive subdivision,
see further) ,

= delimits a closed convex domain if the control
polygon itself is convex and closed... ,

= Its length is smaller than that of the control polygon.

17

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Same examples as shown earlier on Lagrange
interpolation

= Circle with an increasing number of points
= Perturbation of the control points

18

:»» LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 2

19

:»» LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 4

20

:»» LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 10

21

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 20

22

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= When the number of control points increases, the
curve tends to the control polygon (under the
assumption that the control polygon itself converges
to a smooth curve ...)

= The approximation involves a substantial error
between the curve and the control points

= However, an interpolation is not the objective here...

23

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Perturbation of a point
= We shift the indicated point

24

:»» LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 4

25

:»» LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 10

26

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 20

27

<

o HE&E CAD & Computational Geometry
Bézier curves

= Editing Bezier curves

= Degree elevation

= Computation of points on the curve (De Casteljau's
algorithm and others)

= Changing the range of a curve
= Cutting, extension
= Curves defined by pieces and recursive subdivision

28

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Degree elevation

= A curve of degree d+1 is able to represent any
curve of degree d

= If there aren't enough control points to design a
given shape, the degree may be increased...

= New control points must be determined (one more !)
= Forrest's equations [1972]

Qy=P,

1 o 1 ..
Qi—d+1Pi_1+(1 d+1)Pi for i=1,---,d

Q,=P,

29

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Degree elevation in practice ...

SN

Degree 4

30

&

LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 5

31

&

LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 6

32

&

LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 7

33

&

LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 8

34

&

LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 9

35

&

LIEGE CAD & Computational Geometry

université

Bézier curves

Degree 21

36

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= De Casteljau's algorithm

= Allows the robust construction of points on the
curve

= Very simple geometrical interpretation

37

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Principle of De Casteljau's algorithm

= Construction of the centroids P; of the control
points P! : P =(1—u)P)+uP’,,

= We continue with P;

. . . . d
= As far as possible, until only one control point remains, P,

That control pointpiﬂs P(u).

38

:ﬁ uLnI.EgE CAD & Computational Geometry
Bézier curves

= Kig

P3

39

../../CAO/cours3/bezier.kig

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= The algorithm is

Initialization of P,
Forj from 1 to d
For i from 0 to d-j
P/=(1—u)P!'+u P/
EndFor

EndFor
P{ is the point we want.

= What is its complexity ?

= Consists of 3d(d+1) multiplications
and 3d(d+1)/2 additions , so quadratic with respect
of the the degree d.

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Restriction of a curve (cutting)

= Let us compute the intersection of two curves

= We need a independent representation of each segment
= One wants 0<u<Il on each segment

41

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Let us start from De Casteljau’'s geometrical
construction "

42

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Let us start from De Casteljau’'s geometrical
construction =

= The control polygon of the both parts is obtained
from points coming from De Casteljau's algorithm !

<

¢ LIEGE CAD & Computational Geometry

université

Bézier curves

= Recursive subdivision

= Allows to draw the curve quickly with the help of De
Casteljau's algorithm

= |dea : splitting up the curve in two parts at 4=0.5, then
these sub-curves in four parts (still for #™=0.5) and so on.

= The control points of the sub-curves are obtained like a
residual of the De Casteljau algorithm at each step

= The control points quickly converge toward the curve

= When the gap between the starting and ending points of
each sub-curves is lower than a factor (depends on the
resolution), we join simply the points of the characteristic
polygon by straight line segments.

= |t's a « divide and conquer » approach — a famous
paradigm in software engineering.

44

:; LIEGE CAD & Computational Geometry

université

Bézier curves

0 subdivision

2 subdivisions

4 subdivisions

8 subdivisions

16 subdivisions

R
s

32 subdivisions

45

¢ LIEGE CAD & Computational Geometry

< université

Bézier curves

= Cost of the recursive subdivision algorithm
= ITn O(d*-2") for m levels of subdivision
= Number of generated points: d-2"

= For each point that is generated, the algorithm
becomes linear...

= |t is not very accurate, nevertheless very robust.

46

<

’ llfnl.\EgE CAD & Computational Geometry
Partition of unity and affine invariance

= Property of affine invariance

= It is a useful property such that the curves we
define for a set of control points can undergo linear

affine transformations without hassle.
« Let P’ the affine transformation of the control points P,
= Let P'(u,P) the affine transformation of the points of the
curve P(u,P) defined from the original points P,

= Let P(u,P’) the new curve based on the modified control
points P, with the same parametrization.

= The affine invariance is verified iff P"(u,P) = P(u,P.)
for all u.

47

¢ LIEGE CAD & Computational Geometry

< université

Partition of unity and affine invariance

= Affine transformations ¢(P)=A-P+u

Translation 1 10
Scalin . u=(p| ; A=|0 1
g
_ C 0 0
3 rotatlonN

Shear

u=0 ; A=

_ . S

==

g
]
0

= 12 degrees of freedom

o o o

_0 O

oS N O

sin 0

0

.
0
/.

.cose —sin 0 O.
cos® O

0

1-

48

4» !?nl.\EEE CAD & Computational Geometry
Partition of unity and affine invariance

Let P a parametric curve built this way :
n—1
P):Z PiK?<”)
0
= Let's verify the invariance by a translation ¢

n—1
P(u,P)=) (P+1)K ZPK +ZtK
0

=P(u,P,)+ Z t K" (u) Partition of unity
0

\

=P(u,P)+t=P (u,P,) iff Z K"

49

¢ LIEGE CAD & Computational Geometry

< université

Partition of unity and affine invariance

= For the other multiplicative transformations
n—1 n—1
P(u, P})=2,(A-P)K](u)=A-2 PK](u)
0 0
=A-P(u,P)=P (u,P,)

(no particular conditions except linearity

with respect to the coordinates of the control points)
Consequently, iff the basis functions form a partition of unity,

and the dependence with respect to the control points is

linear, then the representation is invariant by any affine
transformation.

50

¢ LIEGE CAD & Computational Geometry

< université

Partition of unity and affine invariance

. Qase of splines : we had on each interval :
a[i]OZ'xi
A —X;

a[i]2:3<xi+1_xi>_2xi_xi+1

\a[z‘]3:2(xi_xi+1)+x;+x;'+1

3

'

x[i]<a>:xi+x;a+<3('xi—kl_xi)_zx;’_'xz—l—l)az_l_(z(xi_xi—l—l)_'_x;’_'_xz—l—l)ﬁ

= By rearranging equations
X (@)=x,(1-30"+20") +x,(a—20"+u)

+x._ (30 —20)+x. (—u+u)

i+1
51

<

¢ LIEGE CAD & Computational Geometry

université

Partition of unity and affine invariance

= In fact, we use Hermite polynomials (for two
points), on each interval

|
P =1-3u"4+2u’

2 43
hi,=3u —2u

I
n=u—2u +u

\hﬁ:—a%fﬁ

52

<

¢ LIEGE CAD & Computational Geometry

université

Partition of unity and affine invariance

= Properties of the Hermite basis

h?0<“_,-):6~

ij

<hz"10)'<uj):
h?J(”_,'):O

() (u,)=

Interpolation
’/ of the 1
positions
0 0.8
0.6
5@7\
0.4
Interpolation
of the slopes
0.2
0

Zh?()(”)zl

I

-0.2

53

¢ LIEGE CAD & Computational Geometry

< université

Partition of unity and affine invariance

= Do Hermite's basis form a partition of unity ?

(
hl=1-3u"+2u’

hyy(u)=1

Zol : Wl =30 —2u
he=u—2u +u’

F(u)=1 \hﬁ:—a%zﬁ

54

<

¢ LIEGE CAD & Computational Geometry

université

Partition of unity and affine invariance

= Let's check the invariance

= If we apply a translation to the control points P, the
derivatives P’ should not change ...

P,=P+t P, =P,

55

’ LIEGtE CAD & Computational Geometry
< universite
Partition of unity and affine invariance

= \We must also check the invariance for the other
multiplicative transformations : those affect both
the coordinates and the derivatives

P, =A-P, P, =AP,

56

4» ¢ LIEGE CAD & Computational Geometry

université

Partition of unity and affine invariance
- Beware of the computation of the slopes x. ...

= Natural Splines :

71 X0 3(x,—X,)
1 4 1 X 3(x,—x,)
1 4 1 Xy || 3(x;—x,
4 1 X, 9 3(‘xn—l_xn—3)
1 2

/Lmear operator

P=L(P,— P '=L(P,—P)=L((4-P+t)—(A4-P +1t))
—A L(Pi Pj)_A P;- It 1s OK 1n this case

57

<

’ HE&E CAD & Computational Geometry
Partition of unity and affine invariance

= Rotation of 45°

= Scaling x direction
(times 0.5)

= Followed by a
translation

58

