
1

CAD & Computational Geometry

Outline

 Interpolation and polynomial approximation
 Interpolation

 Lagrange
 Cubic Splines

Approximation
 Bézier curves
 B-Splines

2

CAD & Computational Geometry

Outline

 Approximation
 Bézier curves
 B-Splines
 We still focus on curves for the moment.

3

CAD & Computational Geometry

Bézier curves

4

CAD & Computational Geometry

Bézier curves

 Bézier curves
 Pierre Bézier (1910-1999)
 Develops UNISURF –

first surface modelling software
at Renault's (1971)

 Publicizes the theory under his name in 1962...
however, the principle was discovered in 1959 by
Paul de Casteljau (at Citroën's) ! Because of the
“culture of secret” at Citroën, De Casteljau will have
his works recognized only in 1975.

5

CAD & Computational Geometry

Bézier curves

 Use of Bézier curves :
 Postscript fonts (cubic Bézier) & TrueType

(quadratic Bézier)

 Computer graphics
 In geometrical modeling and CAD, they tend to be

replaced by more general techniques (NURBS,
a.k.a B-Splines in homogeneous coordinates)

AaBbCc

6

CAD & Computational Geometry

Bézier curves

 Modelling by interpolation is not very practical
 We seldom have interpolation points at our hand

 Instead, we hope to define these points as the result of a
modeling process instead of as an input data

 Approximation gives more freedom in the design of
the curve

7

CAD & Computational Geometry

Bézier curves

 Elements of a Bézier curve :

n=d+1 control points

Bézier curve

Control Polygon
with d=n-1 sides

(also called
characteristic

polygon)

For Bézier curves, the
notion of knot is
trivial :

u0=0 u1=1

8

CAD & Computational Geometry

Bézier curves

 Characteristics of Bézier curves
 More freedom than interpolation

 Any degree
 Precise control of the curve's shape
 Numerical stability even with high degree (not as Lagrange !)

 The are Bernstein polynomials (Sergei N. Bernstein,
1880-1968 - don't mistake for Leonard Bernstein...:) :

 They form a complete polynomial basis
 They are a partition of the unity
 Sometimes called ‘blending functions’
 The curve is described as one polynomial (unlike splines)

P (u)=∑
i=0

d

P i Bi
d (u)

Bi
d u

9

CAD & Computational Geometry

Bézier curves

 Bernstein polynomials

Bi
d u=di ui 1−ud −i

Binomial coefficients

10

CAD & Computational Geometry

Bézier curves

 Binomial coefficients : computed with Pascal's
triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 2 3 4 5

d=0

1

2

3

4

5

d
i d

i = d !
d−i ! i !

(di)=(d−1
i)+(d−1

i−1)

i=0

11

CAD & Computational Geometry

Bézier curves

 Bernstein polynomials

 By design, they form a partition of unity...

Bi
d (u)=(di)ui (1−u)d −i

1

Binomial coefficients

=∑
i=0

d

Bi
d (u)

=∑
i=0

d

(d
i)Ai Bd−i=[(1−u)+u]d=[A+B]d =∑

i=0

d

(d
i)ui (1−u)d−i

12

CAD & Computational Geometry

Bézier curves

 Some characteristics of the B. polynomials.

 has a root of multiplicity i for u=0
 has a root of multiplicity d-i for u=1

 (symmetry of the basis)

 If i≠0, has a unique maximum at u=i/d

Bi
d (u)=0 if i< 0 or i> d

Bi
d (0)=δi 0 and Bi

d (1)=δi d

Bi
d u

Bi
d (u)≥0 for u∈[0,1]

Bi
d u

Bi
d (1−u)=Bd−i

d (u)

Bi
' d=d Bi−1

d −1u−Bi
d−1u

Bi
d u

Bi
d (i /d)=i i d−d (d−i)(d−i)(d

i)

13

CAD & Computational Geometry

Bézier curves

 Recurrence relations of Bernstein's basis

... but no practical interest other than demonstrating algebraic
relations (cf. following)

 These polynomials are usually not computed
explicitly

Bi
d u=1−uBi

d−1uu Bi−1
d−1u

Bd
d u=u Bd−1

d−1u B0
d u=1−uB0

d−1u

14

CAD & Computational Geometry

Bézier curves

 Degree 4
 No negative values

Therefore, no value
above 1!

15

CAD & Computational Geometry

Bézier curves

 Degree 20
 No extreme values

 Existence of a limit
envelope

e (u)= 1

√2d πu(1−u)

e (u)

16

CAD & Computational Geometry

Bézier curves

 The characteristics of Bernstein polynomials
involve that the Bézier curve

 :
 interpolates P

0
 and P

d
 ,

 is invariant by affine transformations ,
 is contained in the convex

hull of its control points
(because P(u) is a combination
with positive coefficients of
control points – also called
convex combination) ,

P u=∑
i=0

d

Pi Bi
d u

17

CAD & Computational Geometry

Bézier curves

(following)
 is variation diminishing : the curve has less inflexion

points (wiggles) than there are undulations of the
characteristic polynomial (proof by the fact that a
Bézier curve is obtained by recursive subdivision,
see further) ,

 delimits a closed convex domain if the control
polygon itself is convex and closed... ,

 Its length is smaller than that of the control polygon.

18

CAD & Computational Geometry

Bézier curves

 Same examples as shown earlier on Lagrange
interpolation

 Circle with an increasing number of points
 Perturbation of the control points

19

CAD & Computational Geometry

Bézier curves

Degree 2

20

CAD & Computational Geometry

Bézier curves

Degree 4

21

CAD & Computational Geometry

Bézier curves

Degree 10

22

CAD & Computational Geometry

Bézier curves

Degree 20

23

CAD & Computational Geometry

Bézier curves

 When the number of control points increases, the
curve tends to the control polygon (under the
assumption that the control polygon itself converges
to a smooth curve ...)

 The approximation involves a substantial error
between the curve and the control points

 However, an interpolation is not the objective here...

24

CAD & Computational Geometry

Bézier curves

 Perturbation of a point
 We shift the indicated point

25

CAD & Computational Geometry

Bézier curves

Degree 4

26

CAD & Computational Geometry

Bézier curves

Degree 10

27

CAD & Computational Geometry

Bézier curves

Degree 20

28

CAD & Computational Geometry

Bézier curves

 Editing Bézier curves
 Degree elevation
 Computation of points on the curve (De Casteljau's

algorithm and others)
 Changing the range of a curve

 Cutting, extension
 Curves defined by pieces and recursive subdivision

29

CAD & Computational Geometry

 Degree elevation
 A curve of degree d+1 is able to represent any

curve of degree d
 If there aren't enough control points to design a

given shape, the degree may be increased...
 New control points must be determined (one more !)
 Forrest's equations [1972]

Q0=P0

Q i=
i

d +1
P i−1+(1− i

d+1
) Pi for i=1,⋯ , d

Qd 1=P d

Bézier curves

30

CAD & Computational Geometry

Bézier curves

 Degree elevation in practice ...

Degree 4

31

CAD & Computational Geometry

Bézier curves

Degree 5

32

CAD & Computational Geometry

Bézier curves

Degree 6

33

CAD & Computational Geometry

Bézier curves

Degree 7

34

CAD & Computational Geometry

Bézier curves

Degree 8

35

CAD & Computational Geometry

Bézier curves

Degree 9

36

CAD & Computational Geometry

Bézier curves

Degree 21

37

CAD & Computational Geometry

Bézier curves

 De Casteljau's algorithm
 Allows the robust construction of points on the

curve
 Very simple geometrical interpretation

38

CAD & Computational Geometry

Bézier curves

 Principle of De Casteljau's algorithm
 Construction of the centroids of the control

points :
 We continue with

 As far as possible, until only one control point remains,
That control point is P(u).

P i
0

P i
1

P i
1=(1−u) P i

0+u P i+1
0

P i
2

P0
d

39

CAD & Computational Geometry

Bézier curves

 Kig

../../CAO/cours3/bezier.kig

40

CAD & Computational Geometry

Bézier curves

 The algorithm is :

 What is its complexity ?
 Consists of 3d(d+1) multiplications

and 3d(d+1)/2 additions , so quadratic with respect
of the the degree d.

Initialization of
For j from 1 to d
 For i from 0 to d-j

 EndFor
EndFor
 is the point we want.

P i
j=1−u Pi

j−1u Pi1
j−1

P0
d

P i
0

41

CAD & Computational Geometry

Bézier curves

 Restriction of a curve (cutting)
 Let us compute the intersection of two curves

 We need a independent representation of each segment
 One wants 0<u<1 on each segment

42

CAD & Computational Geometry

Bézier curves

 Let us start from De Casteljau's geometrical
construction

43

CAD & Computational Geometry

Bézier curves

 Let us start from De Casteljau's geometrical
construction

 The control polygon of the both parts is obtained
from points coming from De Casteljau's algorithm !

44

CAD & Computational Geometry

Bézier curves

 Recursive subdivision
 Allows to draw the curve quickly with the help of De

Casteljau's algorithm
 Idea : splitting up the curve in two parts at u=0.5, then

these sub-curves in four parts (still for u*=0.5) and so on.
 The control points of the sub-curves are obtained like a

residual of the De Casteljau algorithm at each step
 The control points quickly converge toward the curve
 When the gap between the starting and ending points of

each sub-curves is lower than a factor (depends on the
resolution), we join simply the points of the characteristic
polygon by straight line segments.

 It's a « divide and conquer » approach – a famous
paradigm in software engineering.

45

CAD & Computational Geometry

Bézier curves

0 subdivision

2 subdivisions

4 subdivisions

8 subdivisions

16 subdivisions

32 subdivisions

46

CAD & Computational Geometry

Bézier curves

 Cost of the recursive subdivision algorithm
 In for m levels of subdivision
 Number of generated points:
 For each point that is generated, the algorithm

becomes linear…
 It is not very accurate, nevertheless very robust.

O d 2⋅2m
d⋅2m

47

CAD & Computational Geometry

Partition of unity and affine invariance

 Property of affine invariance
 It is a useful property such that the curves we

define for a set of control points can undergo linear
affine transformations without hassle.

 Let P
i
* the affine transformation of the control points P

i

 Let P*(u,P
i
) the affine transformation of the points of the

curve P(u,P
i
) defined from the original points P

i

 Let P(u,P
i
*) the new curve based on the modified control

points P
i
* , with the same parametrization.

 The affine invariance is verified iff P*(u,P
i
) = P(u,P

i
*)

for all u.

48

CAD & Computational Geometry

Partition of unity and affine invariance

 Affine transformations

Translation

Scaling

3 rotations

Shear

 12 degrees of freedom

P ≡A⋅Pu

u=[abc] ; A=[1 0 0
0 1 0
0 0 1]

u=0 ; A=[d 0 0
0 e 0
0 0 f]

u=0 ; A=[cos −sin 0
sin cos 0

0 0 1]⋯u=0 ; A=[1 g h
0 1 i
0 0 1]

49

CAD & Computational Geometry

Partition of unity and affine invariance

Let P a parametric curve built this way :

 Let's verify the invariance by a translation t:

P (u , Pi)=∑
0

n−1

P i K i
n (u)

P (u , Pi
*)=∑

0

n−1

(P i+t) K i
n(u)=∑

0

n−1

P i K i
n(u)+∑

0

n−1

t K i
n(u)

=P (u , P i)+∑
0

n−1

t K i
n(u)

=P (u , P i)+t=P*(u , Pi) iff ∑
0

n−1

K i
n(u)=1

Partition of unity

50

CAD & Computational Geometry

Partition of unity and affine invariance

 For the other multiplicative transformations

Consequently, iff the basis functions form a partition of unity,
and the dependence with respect to the control points is
linear, then the representation is invariant by any affine
transformation.

P (u , Pi
*)=∑

0

n−1

(A⋅P i) K i
n (u)=A⋅∑

0

n−1

P i K i
n(u)

=A⋅P (u , P i)=P*(u , P i)
(no particular conditions except linearity
with respect to the coordinates of the control points)

51

CAD & Computational Geometry

Partition of unity and affine invariance

 Case of splines : we had on each interval :

 By rearranging equations

{a[i]0=xi

a[i]1=x i
'

a[i]2=3 xi1−x i−2 xi
' −x i1

'

a[i]3=2xi−x i1xi
'x i1

'

x [i]u=xix i
'
u3x i1−x i−2 x i

'−xi1
' u

22 xi−x i1xi
'x i1

' u
3

x [i]u=xi 1−3u
22u

3x i
' u−2u

2u
3

x i13u2−2 u3xi1
' −u2u3

52

CAD & Computational Geometry

Partition of unity and affine invariance

 In fact, we use Hermite polynomials (for two
points), on each interval

{h00
p =1−3u22u3

h10
p =3u

2−2u
3

h01
p =u−2u2u3

h11
p =−u2u3

53

CAD & Computational Geometry

Partition of unity and affine invariance

 Properties of the Hermite basis

hi0
n u j= ij

hi0
n 'u j=0

hi1
n 'u j=ij

hi1
n u j=0

∑
i

hi0
n u=1

Interpolation
of the
positions

Interpolation
of the slopes

54

CAD & Computational Geometry

Partition of unity and affine invariance

 Do Hermite's basis form a partition of unity ?

∑
0

n−1

h??
n u=1 {h00

p =1−3u22u3

h10
p =3u

2−2u
3

h01
p =u−2u2u3

h11
p =−u2u3F u=1

F 0=1
F 1=1 F ' 0=0

F ' 1=0

55

CAD & Computational Geometry

 Let's check the invariance
 If we apply a translation to the control points P

i
, the

derivatives P
i
' should not change ...

P (Pi
*)=∑

0

1

(P i+t)hi0
n (u)+∑

0

1

Pi
' hi1

n (u)

=∑
0

1

thi0
n (u)+∑

0

1

P i hi0
n (u)+∑

0

1

P i
' hi1

n (u)

=t+P (P i)=P*(P i)

P i
*=P i+t P i

' *=P i
'

Partition of unity and affine invariance

56

CAD & Computational Geometry

Partition of unity and affine invariance

 We must also check the invariance for the other
multiplicative transformations : those affect both
the coordinates and the derivatives

P P i
*=∑

0

1

 A⋅P ihi0
n u∑

0

1

 A⋅Pi
' hi1

n u

P i
*=A⋅P i P i

' *=A⋅P i
'

=A⋅∑
0

1

P i hi0
n u∑

0

1

P i
' hi1

n u
=A⋅P (P i)=P*(P i)

QED

57

CAD & Computational Geometry

Partition of unity and affine invariance

 Beware of the computation of the slopes x'
i
 ...

 Natural Splines :

2 1
1 4 1

1 4 1
⋱
1 4 1

1 2

x0
'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

=
3x1−x0
3 x2−x0
3x3−x1

⋮
3xn−1−xn−3
3 xn−1−xn−2

P i

'=L(P i−P j)⇒ P i
' *=L(P i

*−P j
*)=L((A⋅Pi+t)−(A⋅P j+t))

 =A⋅L(P i−P j)=A⋅Pi
'

Linear operator

It is OK in this case

58

CAD & Computational Geometry

Partition of unity and affine invariance

 Rotation of 45°
 Scaling x direction

(times 0.5)
 Followed by a

translation

