
1

CAD & Computational Geometry

Outline

 Interpolation and polynomial approximation
 Interpolation

 Lagrange
 Cubic Splines

Approximation
 Bézier curves
 B-Splines

2

CAD & Computational Geometry

 Some vocabulary (again ;)
 Control point : Geometric point that serves as

support to the curve
 Knot : a specific value of the parameter u

corresponding to a joint between pieces of a curve
 Knot sequence : the set of knots values (in an

increasing order).

W
olfram

 research

3

CAD & Computational Geometry

 Interpolation
 The curve passes through the control points

 Approximation
 The curve doesn't necessary passes through the

control points
 But these have an influence ...

 Statistic approaches ?
 Least squares
 « Kriging »
 Not very adapted to geometric modelling

4

CAD & Computational Geometry

Interpolation

5

CAD & Computational Geometry

Interpolation

Interpolation
 We want draw a regular and smooth parametric

curve through a certain number n of points P
i

 Several families of base functions are available
 Most obvious are polynomials
 There are others -

 Trigonometric functions (by mean of a Fourier decomposition for
instance)

 Power functions
 etc...

6

CAD & Computational Geometry

Interpolation

 We must choose the parametrization (nodal
sequence)

 Uniform

u
0
=0

u
1
=1

u
2
=2

u
n-1

=n-1

7

CAD & Computational Geometry

Interpolation

 Or non-uniform

u
0
=0

u
1
=2.5

u
2
=7

u
n-1

=15

8

CAD & Computational Geometry

Interpolation

 Can we choose u as a curvilinear abscissa ?
 In principle no since we don't know the final shape

of the curve beforehand (with the exception of
interpolation points)

 We will see later that it is often impossible that u
corresponds with s exactly along the whole curve
using analytical functions.

 But nothing forbids to get close to that –
numerically...

9

CAD & Computational Geometry

Interpolation

 Parametrization as an approximate arc length

u
0
=0

u
1
=d

1

u
2
=d

1
+d

2

d
1

d
n-1

d
2

u
n-1

=d
1
+...+d

n-1

10

CAD & Computational Geometry

Interpolation

 In all cases, we want to have :

 We are going to interpolate the functions x(u) and
y(u) with ONE polynomial with n parameters

 This one must be of order p=n-1 :

 We set the linear system and solve...

P ui=P i ≡ {xui=xi

y ui= y i

x u=a0a1 ua2 u2⋯an−1 un−1=∑
j=0

n−1

a j u
j

{x u1=x1

⋮
x un−1=xn−1

11

CAD & Computational Geometry

Interpolation

 Vandermonde matrix

Can be solved by classical numerical methods, but ...
 The condition number of this matrix is VERY bad

 It must be solved for each RHS member ((x
i
) or (y

i
))

, or have to take the inverse of this matrix, or perform
an LU decomposition.

{x u1=x1

⋮
x un−1=xn−1 (1 u0 u0

2 ⋯ u0
n−1

1 u1 u1
2 ⋯ u1

n−1

⋮ ⋮ ⋮ ⋮ ⋮
1 un−1 un−1

2 ⋯ un−1
n−1)(a0

a1

⋮
an−1

)=(
x0

x1

⋮
xn−1

)

12

CAD & Computational Geometry

Interpolation

 Instead of setting the polynomial in x and in y
and solving, we can put it under the following
form :

, where the l
i
p(u) are a polynomial basis of order p=n-1.

 These polynomials verify, for an interpolation :

 We have only one computation to do for any
position of the interpolation points, knowing the u

i

(the parametrization)

{x u=∑
0

n−1

x i l i
p u

y u=∑
0

n−1

yi l i
p u

⇔ P u=∑
0

n−1

Pi l i
p u

l i
p u j= ij

13

CAD & Computational Geometry

Lagrange polynomials

 Order 4
 The u

i
 are evenly

distributed between
u=0 and u=1

 The sum is equal to 1
(partition of unity)

 Presence of negative
values

14

CAD & Computational Geometry

Lagrange polynomials

 Order 10
 Presence of huge

overshoots near the
boundaries

15

CAD & Computational Geometry

Lagrange polynomials

 The interpolation is represented by the following
form :

 Two things worth noting:
 The curve depends linearly on the position of the

points
 It is formed by a weighted sum of basis functions

that express the influence of each point on the
curve

P (u)=∑
i=0

n−1

P i l i
p (u) with l i

p(u)= ∏
j=0, i≠ j

n−1 (u−ui)
(u j−ui)

16

CAD & Computational Geometry

Lagrange polynomials

 An experiment
 We approximate a circle by an increasing number

of points
 Simultaneously , approximation order increases

 In every case, the curve is C

17

CAD & Computational Geometry

3 points, order 2 (a parabola !)

Lagrange polynomials

18

CAD & Computational Geometry

5 points, order 4

Lagrange polynomials

19

CAD & Computational Geometry

11 points, order 10

Lagrange polynomials

20

CAD & Computational Geometry

21 points, order 20

Lagrange polynomials

21

CAD & Computational Geometry

Lagrange polynomials

 Does it work ?
 The points were set exactly on the circle

 What occurs if their position is inaccurate ?
 Or if the approximated shape is not so simple ?
 We are going to see two cases

 The coordinates of the points are perturbed randomly
 A deterministic increase and decrease of the radius

22

CAD & Computational Geometry

Lagrange perturbation

 Random perturbation
 Each point is moved radially by a value between -

0.5 and +0.5 % of the circle's radius

23

CAD & Computational Geometry

3 points, random perturbation 1%

Lagrange polynomials

24

CAD & Computational Geometry

5 points, random perturbation 1%

Lagrange polynomials

25

CAD & Computational Geometry

11 points, random perturbation 1%

Lagrange polynomials

26

CAD & Computational Geometry

21 points, random perturbation 1%

Lagrange polynomials

27

CAD & Computational Geometry

Lagrange polynomials

 Runge phenomenon
 Similar to Gibbs phenomenon of the

decompositions in harmonic functions

28

CAD & Computational Geometry

Lagrange polynomials

 How to minimize Runge's phenomenon ?
 The problem here is the use of a unique polynomial

and regular intervals between knots.
 Instead, if we concentrate knots at the extremities,

the interpolation is less prone to Runge's
phenomenon.

 Make use of Chebyshev knots:

 in the interval [-1,1]

or in the interval [0,1]

ui
n=cos (2 i−1

2 n
π)

ui
n=1

2
+ 1

2
cos(2 i−1

2 n
π)

29

CAD & Computational Geometry

21 points, random perturbation 1%

Uniform nodal intervals – lagrange interpolation

Lagrange polynomials

30

CAD & Computational Geometry

21 points, random perturbation 1%

Using Chebychev knots

Lagrange polynomials

31

CAD & Computational Geometry

Lagrange polynomials

Morality :
 Lagrange interpolation is not suited beyond 10's of

control points because of the Runge phenomenon
 A modification of the position of a control point

leads to global changes of the curve.
 (The evaluation of high order polynomials

expressed as monomials leads to numerical
problems.)

 No control of the slopes at the boundary of the
curve (start and finish).

32

CAD & Computational Geometry

Splines

33

CAD & Computational Geometry

Splines

 Motivation
Let us imagine that we have many (100's of)
control points

 But we don't want a Lagrange interpolation !
 We should stay with a low order scheme but

conserve enough freedom to pass through every
point

 Curve defined by pieces ... and of low order (1)

34

CAD & Computational Geometry

Splines

 We are going to build a low order interpolation
for each knot interval, such that we can impose
slopes at the knots.

u=u
i+1

u=u
i

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1

35

CAD & Computational Geometry

Splines

 In each range [i,i+1] , we want to have an
independent polynomial

 We have 4 parameters : position at each knot
and associated tangents.

 The basis must have 4 degrees of freedom, thus be
of order 3 in the case of polynomials.

x [i]u=A[i]0A[i]1 uA[i]2 u2A[i]3 u3 , u∈[ui , ui1]

P (ui)=P i ≡ {x (ui)=x i

y (ui)= y i

...

36

CAD & Computational Geometry

Splines

 First, every interval has a unit length i.e.

 Then we ensure identical intervals [0...1] between
each interpolation point :

 On each interval i , we thus have the following
relation:

ui1−ui=1

u=
u−ui

u i1−ui

=u−ui

x[i](ū)=a[i]0+a[i]1 ū+a[i]2 ū2+a[i]3 ū3 , ū∈[0,1]

d u
du

=1

37

CAD & Computational Geometry

Splines

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1

u=0

u=1

38

CAD & Computational Geometry

Splines

 We pass through both control points:

 We impose both slopes :

 At the end :

P (ū=0)=P i⇔a[i]0+a[i]1 ū+a[i]2 ū2+a[i]3 ū3=x i

P (ū=1)=P i+1⇔a[i]0+a[i]1 ū+a[i]2 ū2+a[i]3 ū3=x i+1

P '(ū0=0)=P 'i⇔a[i]1+2 a[i]2 ū+3 a[i]3 ū2=xi
'

P '(ū=1)=P 'i+1⇔a[i]1+2 a[i]2 ū+3 a[i]3 ū2=xi+1
'

{a[i]0=xi

a[i]1=x i
'

a[i]2=3 xi1−x i−2 xi
' −x i1

'

a[i]3=2xi−x i1xi
'x i1

'

39

CAD & Computational Geometry

Splines

 We have continuity
 We have continuity of the derivatives
 But how to choose the slopes ?

 Let the user choose (“artistic” freedom)
 Automatically ...

40

CAD & Computational Geometry

Splines

 By finite differences with three points :

 At the boundaries, we use finite differences (asymmetric)

 The result depends on the parametrization !
 Cardinal spline

 c is a « tension » parameter. c=0 gives yields the so called
“Catmull-Rom” spline, c=1 a zigzagging line.

x i
'=

xi1−xi

2 ui1−ui


xi−xi−1

2 ui−ui−1

x0
' =

x1−x0

u1−u0

xn−1
' =

xn−1−xn−2

un−1−un−2

x i
'=1−c

x i1−xi−1

2
 , 0≤c≤1

x0
' =(1−c)(x1− x0)

xn−1
' =(1−c)(xn−1−xn−2)

41

CAD & Computational Geometry

Splines

5 points, finite differences by varying the parametrization
[0..1] , [0..2] , [0..5] , [0..10]

Continuity of the curve/parameter
but loss of regularity (and of geometric continuity
in many cases)

42

CAD & Computational Geometry

Splines

5 points, Cardinal Spline (Catmull-Rom) c=0

43

CAD & Computational Geometry

Splines

Catmull-Rom Splines are widely used in computer graphics
 Simple to compute, effective
 Local control (price to pay : discontinuous secd derivative)
 Animations with keyframing

 Ensures a fluid motion because of the continuity of the slope

44

CAD & Computational Geometry

Splines

5 points, Cardinal Spline c=0.25

45

CAD & Computational Geometry

Splines

5 points, Cardinal Spline c=0.5

46

CAD & Computational Geometry

Splines

5 points, Cardinal Spline c=0.75

47

CAD & Computational Geometry

Splines

5 points, Cardinal Spline c=1.0

48

CAD & Computational Geometry

Splines

 We can impose the continuity of second derivatives...
 On a curve with n points, we have n extra relations to

impose
 We may impose the continuity of the second derivative only

on the n-2 interior knots

What about the 2 points on the boundary ?
 Impose a vanishing second derivative.

We obtain what is called « natural spline »
 We could also impose the slopes (i.e. only n-2 relations remaining)
 Or , impose that the third derivative is zero on the points 1 and n-2

 That means a single polynomial expression for the first two knot
intervals, and the last two.

49

CAD & Computational Geometry

Splines

 Natural Spline : mathematical approximation of the
spline historically used in naval construction.

C
. D

eB
oor

50

CAD & Computational Geometry

Splines

B
oein

g

51

CAD & Computational Geometry

Splines

 We impose the continuity of the second derivatives

 We substitute in the “internal” equations

 Finally we obtain :

x[i−1]
'' 1=x [i]

'' 0⇔2a[i−1]26a[i−1]3=2a[i]2

2 [3x i−x i−1−2 x i−1
' −x i

']6 [2x i−1−x ix i−1
' x i

']
=2 [3 x i1−x i−2 x i

'−x i1
']

x i−1
' 4 x i

'x i1
' =3xi1−x i−1

52

CAD & Computational Geometry

Splines

 At the boundaries we want

 We have then a linear system with n unknowns :

x [0]
'' 0=0⇔2a[0]2=0

x [n−2]
'' 1=0⇔2a[n−2]26a[n−2]3=0

2 x0
' x1

' =3x1−x0
xn−2

' 2 xn−1
' =3xn−1−xn−2

2 1
1 4 1

1 4 1
⋱
1 4 1

1 2
 

x0
'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

=
3x1−x0
3 x2−x0
3x3−x1

⋮
3xn−1−xn−3
3 xn−1−xn−2



53

CAD & Computational Geometry

Splines

 By solving the system, we have :

 , which is substituted in

,to get the polynomial in each portion :

From the global parameter u, we have to find in which portion we are (the
value of i) , then compute right polynomial...


x0

'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

 {a[i]0=xi

a[i]1=x i
'

a[i]2=3 xi1−x i−2 xi
' −x i1

'

a[i]3=2xi−x i1xi
'x i1

'

x [i]u=a[i]0a[i]1ua[i]2 u
2a[i]3 u

3 , 0≤u1

54

CAD & Computational Geometry

Splines

5 control points, natural spline

Catmull-Rom spline

55

CAD & Computational Geometry

Splines

 Another experiment
 We approximate a circle by a number of increasing

points
 Simultaneously , the order of the approximation the

number of pieces increases.

 In all the cases, the curve is C C
2

56

CAD & Computational Geometry

Splines

3 points, order 3!

57

CAD & Computational Geometry

Splines

5 points

58

CAD & Computational Geometry

Splines

11 points

59

CAD & Computational Geometry

Splines

21 points

60

CAD & Computational Geometry

Splines

 Random perturbation
 Each point is moved radially by a value between -

0.5 and +0.5 % of the circle's radius

61

CAD & Computational Geometry

Splines

3 points, random perturbation 1%

62

CAD & Computational Geometry

Splines

5 points, random perturbation 1%

63

CAD & Computational Geometry

Splines

11 points, random perturbation 1%

64

CAD & Computational Geometry

Splines

21 points, random perturbation 1%

65

CAD & Computational Geometry

Splines

 Deterministic perturbation
 Each point is shifted radially depending on its

position by -5 or +5 % of the circle's radius

66

CAD & Computational Geometry

Splines

3 points, deterministic perturbation 5%

67

CAD & Computational Geometry

Splines

5 points, deterministic perturbation 5%

68

CAD & Computational Geometry

Splines

11 points, deterministic perturbation 5%

69

CAD & Computational Geometry

Splines

21 points, deterministic perturbation 5%

70

CAD & Computational Geometry

Splines

11 points

non local
control

71

CAD & Computational Geometry

Splines

72

CAD & Computational Geometry

Splines

 Perturbation of a point
 We shift one point by a significant amount

73

CAD & Computational Geometry

Splines

21 points

74

CAD & Computational Geometry

99 points

Splines

75

CAD & Computational Geometry

Splines

999 points

76

CAD & Computational Geometry

Splines

 Stable interpolation scheme
 Weak Runge phenomenon
 The displacement of a point yet affects all the

curve
 Nevertheless, the perturbation fades very quickly

further away from the shifted point
 « Overshoots » are limited.

77

CAD & Computational Geometry

Splines

 Closed curve ?
 The curve can be closed, just impose everywhere

that the second derivative is continuous.

78

CAD & Computational Geometry

Splines

 Instead of

... we have

(
4 1 1
1 4 1

1 4 1
⋱
1 4 1

1 1 4
)(

x0
'

x1
'

x2
'

⋮
xn−3

'

xn−2
'

)=(
3(x1−xn−2)
3(x2−x0)
3(x3−x1)

⋮
3(xn−2− xn−4)
3(x0−xn−3)

)
x[n−2]

'' (1)=x[0]
'' (0)⇔2a[n−2]2+6a[n−2]3=2a [0]2

x [0]
'' 0=0⇔2a[0]2=0

x [n−2]
'' 1=0⇔2a[n−2]26a[n−2]3=0

Circulant
matrix

xn−1=x0

xn−1
' =x0

'and

79

CAD & Computational Geometry

Splines

 General case : arbitrary parametrization

 We again change the parametrization...

P (ui)=P i ≡ {x (ui)= xi

y (ui)= y i

x[i](u)=A[i]0+ A[i]1 u+A[i]2 u2+ A[i]3 u3 , u∈[ui , ui+1]

ū=
u−ui

ui+1−ui

x[i](ū)=a[i]0+a[i]1 ū+a[i]2 ū2+a[i]3 ū3 , ū∈[0,1]

d ū
du

= 1
ui+1−ui

= 1
hi

80

CAD & Computational Geometry

Splines

 We pass through both points :

 We impose both slopes :

 Finally :

P u0=0=P i⇔a[i]0a[i]1 u0a[i]2u0
2a[i]3 u0

3=xi

P u1=1=Pi1⇔a[i]0a[i]1 u1a[i]2 u1
2a[i]3 u1

3=x i1

P 'u0=0=d P
d u

0=d P
d u

01
hi

=P 'i⇔a[i]12a [i]2 u03a [i]3u0
2=x i

' hi

P 'u1=1=d P
d u

1=d P
d u

11
hi

=P 'i1⇔a[i]12a[i]2 u13a[i]3 u1
2=x i1

' hi

{a[i]0=x i

a[i]1=x i
' hi

a[i]2=3 x i1− xi−2 x i
' hi−x i1

' hi

a[i]3=2 x i−x i1x i
' hix i1

' hi

81

CAD & Computational Geometry

Splines

 We impose the second derivative for a natural
spline

 We substitute in the internal equations

d 2 P [i]

du2 u=
d 2 P[i]

d u
2

d 2
u

d u2 =
d 2 P [i]

d u
2

1

hi
2

2 [3 xi−x i−1−2 x i−1
' hi−1−x i

' hi−1]6 [2x i−1−x ix i−1
' hi−1x i

' hi−1]

hi−1
2

=
2 [3 x i1−x i−2 x i

' hi−x i1
' hi]

hi
2

x[i−1]
'' 1=x[i]

'' 0⇔
2a[i−1]26a [i−1]3

hi−1
2

=
2a [i]2

hi
2

82

CAD & Computational Geometry

Splines

 We obtain finally :

x i−1
' 2 x i

'

hi−1


2 x i

'x i1
'

hi

=3
 x i−x i−1

hi−1
2

3
 x i1−x i

hi
2

hi  x i−1
' 2 x i

' hi−12 xi
' xi1

' =3
hi

hi−1

x i−x i−13
hi−1

hi

 x i1−x i

83

CAD & Computational Geometry

Splines

 At the boundaries we want a vanishing second
derivative …

 We have then a linear system of n unknowns:

(next page)

x[0]
'' (0)=0⇔

2a [0]2

(h0
2)

=0

x[n−2]
'' (1)=0⇔

2a[n−2]2+6a[n−2]3

(hn−2
2)

=0

h0(2 x0
' + x1

')=3(x1−x0)
hn−2(xn−2

' +2 xn−1
')=3(xn−1−xn−2)

84

CAD & Computational Geometry

Splines

(
2 h0 h0

h1 2 h1+2 h0 h0

⋱
hn−2 2 hn−2+2 hn−3 hn−3

hn−2 2 hn−2

)(
x0

'

x1
'

⋮
xn−2

'

xn−1
'

)=

(
3(x1−x0)

3
h1

h0

(x1− x0)+3
h0

h1

(x2−x1)

⋮

3
hn−2

hn−3

(xn−2−xn−3)+3
hn−3

hn−2

(xn−1−xn−2)

3(xn−1−xn−2)
)

85

CAD & Computational Geometry

Splines

Natural Spline
(uniform parametrization)

Natural Spline
(non uniform parametrization)

u=0

u=1

u=2

u=4

u=5

u=3

u=4

86

CAD & Computational Geometry

Splines

 Compact notation
 We would like a compact representation as for the

Lagrange interpolation.

This on each interval [i,i+1].

x[i](ū)=a[i]0+a[i]1 ū+a[i]2 ū2+a[i]3 ū3

 0≤ū<1

{x[i](ū)=∑
0

n

xi hi 0
p (ū)+∑

0

n

x i
' hi 1

p (ū)

y[i](ū)=∑
0

n

yi hi 0
p (ū)+∑

0

n

y i
' hi 1

p (ū)

...

⇔ P[i](ū)=∑
0

n

P i hi 0
p (ū)+∑

0

n

Pi
' hi 1

p (ū)

{a[i]0=xi

a[i]1=x i
'

a[i]2=3 xi1−x i−2 xi
' −x i1

'

a[i]3=2xi−x i1xi
'x i1

'

87

CAD & Computational Geometry

Splines

 We have on each interval :

 By rearranging equations

{a[i]0=xi

a[i]1=x i
'

a[i]2=3 xi1−x i−2 xi
' −x i1

'

a[i]3=2xi−x i1xi
'x i1

'

x [i]u=xix i
'
u3x i1−x i−2 x i

'−xi1
'  u

22 xi−x i1xi
'x i1

' u
3

x [i]u=xi 1−3u
22u

3x i
' u−2u

2u
3

x i13u2−2 u3xi1
' −u2u3

88

CAD & Computational Geometry

Splines

 3D Curves
 Minimal order so that a curve can have a torsion

(non planar curve)
 Let's consider a Lagrange interpolation
 2 points → on a straight line (no curvature)
 3 points → in a plane (no torsion)
 4 points → torsion becomes possible

 Minimal order to join smoothly two arbitrarily
oriented curves = 3

P u=∑
i=0

n−1

P i l i
p u

