o HE&E CAD & Computational Geometry
) Outline

= Interpolation and polynomial approximation

= Interpolation

= Lagrange

= Cubic Splines
Approximation

= Bézier curves
= B-Splines
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= Some vocabulary (again ;)

= Control point : Geometric point that serves as
support to the curve

= Knot : a specific value of the parameter u
corresponding to a joint between pieces of a curve

= Knot sequence : the set of knots values (in an
increasing order).
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= |Interpolation
= The curve passes through the control points
= Approximation

= The curve doesn't necessary passes through the
control points

= But these have an influence ...
= Statistic approaches ?

= Least squares
= « Kriging »
= Not very adapted to geometric modelling
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Interpolation

Interpolation

= We want draw a regular and smooth parametric
curve through a certain number » of points P,

= Several families of base functions are available
= Most obvious are polynomials

= There are others -

= Trigonometric functions (by mean of a Fourier decomposition for
instance)

= Power functions
= etc...
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Interpolation

= \We must choose the parametrization (nodal
sequence)

= Uniform u,=2

A




¢ LIEGE CAD & Computational Geometry

< université
Interpolation
= Or non-uniform u,=7
A
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Interpolation

= Can we choose u as a curvilinear abscissa ?

= In principle no since we don't know the final shape
of the curve beforehand (with the exception of
interpolation points)

= We will see later that it is often impossible that u
corresponds with s exactly along the whole curve
using analytical functions.

= But nothing forbids to get close to that —
numerically...
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Interpolation

= Parametrization as an approximate arc length

u2=d1+d2
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Interpolation

= |n all cases, we want to have :

x(”i):xi
y(”i):yi
= \We are going to interpolate the functions x(«) and

y(u) with ONE polynomial with » parameters

P(u,)=P, =

l

= This one must be of order p=n-1 :
n—1
x(w)=aytautau’++a, u'"'=) a;u’
j=0

. We set the linear system and solve...
x(ul)le

\x(”nq):an 10
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Interpolation

= VVandermonde matrix

1 u > e oyttt
fx(u )=x ! ’ | o 0
! ! 1 u T T | Y X
° 4’ ° ll .1 ° 10 ll : .1
x(un—l):xn—l . . 2 . n.—l
\ 1 Z/tn_l un—l e un_l an—l xl’l—l

Can be solved by classical numerical methods, but ...
= The condition number of this matrix is VERY bad

= It must be solved for each RHS member ( (x)or(y.))

, or have to take the inverse of this matrix, or perform
an LU decomposition.

11
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Interpolation

= Instead of setting the polynomial in x and in y
and solving, we can put it under the following

form : (W)=Y 1" (u)
° @P<u>=; P.I] (u)

n—1
y(u)=2, 1! (u)
\ 0
, where the [7(u) are a polynomial basis of order p=n-1.

= These polynomials verify, for an interpolation :
17 ()=

= We have only one computation to do for any

ij

position of the interpolation points, knowing the u

(the parametrization)

12
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1.2 T T T T

= Order 4 L/ N
= The u, are evenly : “ | Vo

distributed between
u=0 and u=1 5

= The sumis equalto 1
(partition of unity) 04

* Presence of negative |
values 02

0.2 - =
04 —
06 1 1 ] ] 13
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= Order 10

= Presence of huge
overshoots nearthe | it
boundaries -

0] 0.2 0.4 0.5 ng 1
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Lagrange polynomials

= The interpolation is represented by the following
form :

n—1
u)=Y P,1"(u) with [”(u H (=)
i=0

u—u)

3
p—

= Two things worth noting:

= The curve depends linearly on the position of the
points

= It is formed by a weighted sum of basis functions
that express the influence of each point on the
curve

15
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Lagrange polynomials

= An experiment

= We approximate a circle by an increasing number
of points

= Simultaneously , approximation order increases
= In every case, the curve is C_

16
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3 points, order 2 (a parabola !)

17
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Lagrange polynomials

5 points, order 4
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Lagrange polynomials

11 points, order 10
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21 points, order 20

20
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Lagrange polynomials

= Does it work ?
= The points were set exactly on the circle

= What occurs if their position is inaccurate ?
= Or if the approximated shape is not so simple ?

= We are going to see two cases

= The coordinates of the points are perturbed randomly
= A deterministic increase and decrease of the radius

21
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= Random perturbation

= Each point is moved radially by a value between -
0.5 and +0.5 % of the circle's radius

22



<

o uLnllv‘EeElE CAD & Computational Geometry
Lagrange polynomials

3 points, random perturbation 1%
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Lagrange polynomials

5 points, random perturbation 1%
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11 points, random perturbation 1%
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21 poins, random perturbation 1%

26



’ LlEGtE CAD & Computational Geometry
< universite
Lagrange polynomials

= Runge phenomenon

= Similar to Gibbs phenomenon of the
decompositions in harmonic functions

TSS— -

27
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= How to minimize Runge's phenomenon ?

= The problem here is the use of a unique polynomial
and regular intervals between knots.

= |Instead, if we concentrate knots at the extremities,
the interpolation is less prone to Runge's
phenomenon.

= Make use of Chebyshev knots:
2i—1
2n

U, =Cos T

In the interval [-1,1]

or u”—l+lcos
22

21—1
2n

| inthe interval [0,1]

28
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21 points, random perturbation 1%

j

Uniform nodal intervals — lagrange interpolation

29
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21 points, random perturbation 1%

Using Chebychev knots

30
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Lagrange polynomials

Morality :

= Lagrange interpolation is not suited beyond 10's of
control points because of the Runge phenomenon

= A modification of the position of a control point
leads to global changes of the curve.

= (The evaluation of high order polynomials
expressed as monomials leads to numerical
problems.)

= No control of the slopes at the boundary of the
curve (start and finish).

31



&

LIEGE CAD & Computational Geometry

université

Splines

32



<

o HE&E CAD & Computational Geometry
Splines

= Motivation
Let us imagine that we have many (100's of)
control points

= But we don't want a Lagrange interpolation !

= We should stay with a low order scheme but
conserve enough freedom to pass through every
point

= Curve defined by pieces ... and of low order (1)
A

33
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Splines

= We are going to build a low order interpolation
for each knot interval, such that we can impose

slopes at the_lgnots. .

.
— .
N ——

34
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= In each range [i,i+1] , we want to have an
independent polynomial

= We have 4 parameters : position at each knot
and associated tangents.

= The basis must have 4 degrees of freedom, thus be

of order 3 in the case of polynomials.

r)c(ui)zx.

l

P<“i):Pz‘ = y(“i):)’i

\

x[i](u>:A[i]O+A[i]1u+A[i]2u2+A[i]3 uw ) ME[%-’ ”m]

35
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= First, every interval has a unit length i.e.

”i+1_”i:1

= Then we ensure identical intervals [0...1] between
each interpolation point :
U—Uu, du

- —=1
l
U, | —u, du

= On each interval i, we thus have the following
relation:

xp (@)= ay ot ay a+ag,w +ay,w , u€l0,1]
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= We pass through both control points:
P(u=0)=P, o ayjg*+ay, ii+ay, i +a; i =x,
P(u=1)=P,,, ®ayo+ay, ii+ay, i +ag; i =x,,

= We impose both slopes :

P'(Zt ZO):P'Z-@a[i]1+2a[i]217t+3a[mﬂz:x;
P'(a:l)zp'i+1<:>a[i]l+2a[i]2ﬁ+3 a[i]3ﬁ2:x'i+1

= At the end :

38
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= We have continuity
= We have continuity of the derivatives

= But how to choose the slopes ?

= Let the user choose ( “artistic” freedom)
= Automatically ...

A

39
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= By finite differences with three points :

‘= Xiv1— X n XX
Y 2w ) 2(u—u, )
= At the boundaries, we use finite differences (asymmetric)
x'O:xl_xo x'n_lzxn—l_xn—2
u,—u, U, «—U,_»

= The result depends on the parametrization !

= Cardinal spline

' X. i—X.
Xl-:(l_C) z—l—l2 i—1

= ¢ IS a « tension » parameter. ¢c=0 gives yields the so called
“Catmull-Rom” spline, c=1 a zigzagging line.

x;):(l—c)(xl—xo)

, 0<c<l1 x'n_lz(l—c)(xn_l—xn_Z)

40
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Continuity of the curve/parameter
but loss of regularity (and of geometric continuity
in many cases)

5 points, finite differences by varying the parametrization
[0..1],[0..2],[0..5], [0..10]

41
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5 points, Cardinal Spline (Catmull-Rom) ¢=0

42
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Catmull-Rom Splines are widely used in computer graphics

= Simple to compute, effective
= Local control (price to pay : discontinuous sec? derivative)

= Animations with keyframing
= Ensures a fluid motion because of the continuity of the slope

43
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5 points, Cardinal Spline ¢=0.25
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5 points, Cardinal Spline ¢=0.5
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5 points, Cardinal Spline ¢=0.75
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5 points, Cardinal Spline ¢=1.0

47
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= We can impose the continuity of second derivatives...

= On a curve with n points, we have n extra relations to
Impose

= We may impose the continuity of the second derivative only
on the #n-2 interior knots

What about the 2 points on the boundary ?

= Impose a vanishing second derivative.
We obtain what is called « natural spline »

= We could also impose the slopes (i.e. only r-2 relations remaining)
= Or, impose that the third derivative is zero on the points 1 and »-2

= That means a single polynomial expression for the first two knot
intervals, and the last two.

48
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Splines

= Natural Spline : mathematical approximation of the

spline historically used in naval construction.
e |

100g99(1 D

49
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= We impose the continuity of the second derivatives

x[i—l]( 1 >:x[-](0)<:> 23[;‘—1]2"‘63[1'—1]3:23[1']2

1

= We substitute in the “internal” equations
23 (x,=x, ) =2x,,—x,]+6[2(x,_,—x,)+x,_ +x,]
:2[3<xi+1_xi)_2x;_x;+1]

= Finally we obtain :

x;‘—1+4x;‘+x;‘+1:3 <xi+1_xi—1>

51
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= At the boundaries we want

X[9)(0)=0=2a,,=0 2x,+x,=3(x,—x,)
x[n_z](l)=O©2a[n_2]2—|-6a[n_2]3=0 Xy o t2x, 1 =3(x,_1—x, )

= We have then a linear system with » unknowns :

2 1 X0 3(x1_x0)
1 4 1 X 3(x,—x,)
1 4 1 Xy || 3(x;—x)
Fod Ty ] 13(x,_—x,_5)
1 2

52
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= By solving the system, we have :

. which is substituted in

f

\

drno—X;
A —X;
X)=2x,—X,4,

a[i]2:3<'xi+1_

a[i]3:2<xi_xi+l)+x;’+x;’+l

,to get the polynomial in each portion :

X (@)=ay +a, a+a,, 0 +a,,a , 0<u<l

From the global parameter u, we have to find in which portion we are ( the

value of i ) , then compute right polynomial...

53
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Catmull-Rom spline

5 control points, natural spline

54
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Splines

= Another experiment

= We approximate a circle by a number of increasing
points

= Simultaneously , the-order-of-the-approximation- the
number of pieces increases.

= In all the cases, the curve is €_ C,

55
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3 points, order 3!
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5 points
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11 points
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21 points

59



<

o HEEE CAD & Computational Geometry
Splines

= Random perturbation

= Each point is moved radially by a value between -
0.5 and +0.5 % of the circle's radius

60
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3 points, random perturbation 1%
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5 points, random perturbation 1%
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11 points, random perturbation 1%
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21 points, random perturbation 1%
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= Deterministic perturbation

= Each point is shifted radially depending on its
position by -5 or +5 % of the circle's radius

65
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3 points, deterministic perturbation 5%
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5 points, deterministic perturbation 5%
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11 points, deterministic perturbation 5%
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21 points, deterministic perturbation 5%

69



université

:; LIEGE CAD & Computational Geometry
Splines

non local
control

11 points

70
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4
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= Perturbation of a point
= We shift one point by a significant amount

72
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21 points
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99 points
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999 points
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= Stable interpolation scheme
= Weak Runge phenomenon

= The displacement of a point yet affects all the
curve

= Nevertheless, the perturbation fades very quickly
further away from the shifted point

= « Overshoots » are limited.

76
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= Closed curve ?

= The curve can be closed, just impose everywhere
that the second derivative is continuous.

77
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* |nstead of

n

x1)(0) =0 2a,=0

Splines

X(,-2(1)=0=2a;, ,,+6a;, ,;=0

... we have
x[n—2](1)

Circulant
matrix

4
1

|
4
|

|
4

1

—_—

1

S =

—x[0]<0) <2a, ,,+0a;, ,;=2a,,

3(x1_‘xn—2)
3(x2—x0)
3(x3.—x1)

3 ('xn—2_xn—4)
3(’x0_xn—3)

78



y LlEGtE CAD & Computational Geometry
< universite
Splines

= General case : arbitrary parametrization

3

x[i](u):A[i]O-l-A[i]lu+A[i]2u2+A[i]3 uw o, u€lu;,u,,,l

= \We again change the parametrization...
U—1u, du___ 1 1

—u, du u;,,—u, h

79
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= We pass through both points :
P<ﬁo:0):Pi‘:’a[i]o+a[i]1ﬂo+a[i]zﬁ§+a[i]sﬁ3:xi
P(u,=1)=P,

1+

= We impose both slopes :

_ 2 3
| AT ap Uyt ag U tag);; Uy =X,

o dP, . dP, .1 . . L
P(”ozo):ﬁ(o):ﬁ(mzzpi‘:’a[i]1+23[i]z”o+3a[i]3”§:xihi
o d P dP , .1 , _ _ '
P(ulzl)zﬁ<l):ﬁ(l)h_:Pi+1<:>a[i]1+2a[i]2ul+3a[i]3ul:xi+1hi
( ]
. | Y=
Finally : P
A= (xi—l—l_xi)_zx'ihi_x'i-l—lhi

kCl[i]3:2(-xi_xi-i-l)_I_x'ihi_l_x'i-l-lhi

80
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= We impose the second derivative for a natural
: 2 2 B 2
spline d Pm(a):d Py d’u_d Py 1
du’ du’ du> du’ h’
2a;_t6a; 45 24y,

A

l

= We substitute in the internal equations

2|3 (xi_xi—l)_zx;'—lhi—l_x;hi—1]+6[2(xi—l_xi)+x;'—lhi—l—I_x'ihi—l]

b
2[3(x, = x,)—2x,h,—x
h

! 81
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= We obtain finally :

x;—1+2x;+2x;+x;+1:3('xi_xi—l)+3(‘xi+1_x1)
hi_y h, b hy
! | N h, i—1
hi(xi—l+2xi)+hi—l<2xi+xi+l):3h—(xz_xz—l>+3 2 <xi+1_xz)
i—1 i

82
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= At the boundaries we want a vanishing second

derivative ...
2
(0)=0 =22 =0 o
(hO) h0(2x0+x1)=3(x1—x0)
9) . .
x[n—2]<1)_0<:> a[n?];l;-6)a[n2]3 :O hn—2<xn—2+2xn—l):3 (xn—l_xn—Z)
n—>2

= We have then a linear system of » unknowns:
(next page)
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2h,  hy Xy
h, 2h+2h, h, X,
hn 2 2hn—2+2hn 3 hn—3 xn—2
hn 2 2hn—2 x'n—l
3(x1—x0)
h h
3h_;<x1_xo)+3 I, (x,—x))
3hn_j(xn 2T Xy, 3)"'3 hn_z(xn—l_xn—Z)
3<xn—l_’xn—2)
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Natural Spline
(non uniform parametrization)
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= Compact notation
= We would like a compact rep[esentation as for the

Lagrange interpola’gion. 3 A0 =X;
x)(#)=apotag Bt ap i +ays oy, =x,
0<u<l

a[i]2:3(xi+1_xi>_2x;_x;'+l

f n n a[i]3:2<xi_xi+l>+xi+xi+l

x[i](ﬁ>:2 xihfo(m"'Z x;hf1<77‘)

0 0 . )
_ n & o P.dul=) PR (u)+> P.h(u
y[i](”>:z J’ihipo(“)"'z yz'hﬁ(“) [Z]( ) ; l ’O< ) ; l 11( )
0 0

| s
This on each interval [i,i+1].
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2 \/Ve have on each interval :

Aiijo—Xi

a[m:x;
a[i]2:3(xi+l_xi>_2x;'_x;'+l
a[i]3:2(xi_xi+1)+x;’+x;+l

\
3

'

x[i]<a>:xi+x;‘ﬁ+<3('xi—l—l_xi)_zx;_'xl—l—l)a2+(2<xi_xi—l—l)+x;’+xz+l)ﬂ

= By rearranging equations
X (@)=x,(1-30"+20" ) +x,(a—20"+u)

+x._ (30 —20)+x. (—u+u)

i+1
87
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= 3D Curves

= Minimal order so that a curve can have a torsion
(non planar curve) o
= Let's consider a Lagrange interpolation P (u)=)_ P.I”(u)
= 2 points — on a straight line (no curvature) ="
= 3 points — in a plane (no torsion)
= 4 points — torsion becomes possible

= Minimal order to join smoothly two arbitrarily
oriented curves =3
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