
1

CAD & Computational Geometry

Outline

 Interpolation and polynomial approximation
 Interpolation

 Lagrange
 Cubic Splines

Approximation
 Bézier curves
 B-Splines
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 Some vocabulary (again ;)
 Control point : Geometric point that serves as 

support to the curve
 Knot : a specific value of the parameter u 

corresponding to a joint between pieces of a curve
 Knot sequence : the set of knots values (in an 

increasing order).
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 research
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 Interpolation
 The curve passes through the control points

 Approximation
 The curve doesn't necessary passes through the 

control points
 But these have an influence ...

 Statistic approaches ?
 Least squares
 « Kriging »
 Not very adapted to geometric modelling
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CAD & Computational Geometry

Interpolation
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CAD & Computational Geometry

Interpolation

Interpolation
 We want draw a regular and smooth parametric 

curve through a certain number n of points P
i
 

 Several families of base functions are available
 Most obvious are polynomials
 There are others - 

 Trigonometric functions (by mean of a Fourier decomposition for 
instance)

 Power functions
 etc...
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Interpolation

 We must choose the parametrization (nodal 
sequence)

 Uniform

u
0
=0

u
1
=1

u
2
=2

u
n-1

=n-1
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Interpolation

  Or non-uniform

u
0
=0

u
1
=2.5

u
2
=7

u
n-1

=15
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Interpolation

 Can we choose u as a curvilinear abscissa ?
 In principle no since we don't know the final shape 

of the curve beforehand (with the exception of  
interpolation points)

 We will see later that it is often impossible that  u 
corresponds with s exactly along the whole curve 
using analytical functions.

 But nothing forbids to get close to that – 
numerically...
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Interpolation

 Parametrization as an approximate arc length

u
0
=0

u
1
=d

1

u
2
=d

1
+d

2

d
1

d
n-1

d
2

u
n-1

=d
1
+...+d

n-1



10

CAD & Computational Geometry

Interpolation

 In all cases, we want to have :

 We are going to interpolate the functions x(u) and 
y(u) with ONE polynomial with n parameters

 This one must be of order p=n-1 :

 We set the linear system and solve...

P ui=P i ≡ {xui=xi

y ui= y i

x u=a0a1 ua2 u2⋯an−1 un−1=∑
j=0

n−1

a j u
j

{x u1=x1

⋮
x un−1=xn−1
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Interpolation

 Vandermonde matrix

Can be solved by classical numerical methods, but ...
 The condition number of this matrix is VERY bad

 It must be solved for each RHS member (  ( x
i 
) or ( y

i 
) ) 

, or have to take the inverse of this matrix, or perform 
an LU decomposition.

{x u1=x1

⋮
x un−1=xn−1 (1 u0 u0

2 ⋯ u0
n−1

1 u1 u1
2 ⋯ u1

n−1

⋮ ⋮ ⋮ ⋮ ⋮
1 un−1 un−1

2 ⋯ un−1
n−1)( a0

a1

⋮
an−1

)=(
x0

x1

⋮
xn−1

)
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Interpolation

 Instead of setting the polynomial in x and in y 
and solving, we can put it under the following 
form :

, where the l
i
p(u) are a polynomial basis of order p=n-1.

 These polynomials verify, for an interpolation :

 We have only one computation to do for any 
position of the interpolation points,  knowing the u

i
 

(the parametrization)

{x u=∑
0

n−1

x i l i
p u

y u=∑
0

n−1

yi l i
p u

⇔ P u=∑
0

n−1

Pi l i
p u

l i
p u j= ij
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Lagrange polynomials

 Order 4
 The u

i
 are evenly 

distributed between 
u=0 and u=1

 The sum is equal to 1 
(partition of unity)

 Presence of negative 
values 
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Lagrange polynomials

 Order 10
 Presence of huge 

overshoots near the 
boundaries
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Lagrange polynomials

 The interpolation is represented by the following 
form :

 Two things worth noting:
 The curve depends linearly on the position of the 

points
 It is formed by a weighted sum of basis functions 

that express the influence of each point on the 
curve

P (u)=∑
i=0

n−1

P i l i
p (u)  with   l i

p(u)= ∏
j=0, i≠ j

n−1 (u−ui)
(u j−ui)
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Lagrange polynomials

 An experiment
 We approximate a circle by an increasing number 

of points
 Simultaneously , approximation order increases

 In every case, the curve is C
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3 points, order 2 (a parabola !)

Lagrange polynomials
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5 points, order 4

Lagrange polynomials
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11 points, order 10

Lagrange polynomials
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21 points, order 20

Lagrange polynomials
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Lagrange polynomials

 Does it work ?
 The points were set exactly on the circle

 What occurs if their position is inaccurate ?
 Or if the approximated shape is not so simple  ?
 We are going to see two cases

 The coordinates of the points are perturbed randomly 
 A deterministic increase and decrease of the radius
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Lagrange perturbation

 Random perturbation
 Each point is moved radially by a value between -

0.5 and +0.5 % of the circle's radius
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3 points, random perturbation 1%

Lagrange polynomials
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5 points, random perturbation 1%

Lagrange polynomials



25

CAD & Computational Geometry

11 points, random perturbation 1%

Lagrange polynomials
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21 points, random perturbation 1%

Lagrange polynomials
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Lagrange polynomials

 Runge phenomenon
 Similar to Gibbs phenomenon of the 

decompositions in harmonic functions
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Lagrange polynomials

 How to minimize Runge's phenomenon ?
 The problem here is the use of a unique polynomial 

and regular intervals between knots.
 Instead, if we concentrate knots at the extremities, 

the interpolation is less prone to Runge's 
phenomenon.

 Make use of Chebyshev knots: 

                              in the interval [-1,1]

or                                      in the interval [0,1]

ui
n=cos ( 2 i−1

2 n
π)

ui
n=1

2
+ 1

2
cos( 2 i−1

2 n
π)
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21 points, random perturbation 1%

Uniform nodal intervals – lagrange interpolation

Lagrange polynomials
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21 points, random perturbation 1%

Using Chebychev knots

Lagrange polynomials
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Lagrange polynomials

Morality :
 Lagrange interpolation is not suited beyond 10's of 

control points because of the Runge phenomenon
 A modification of the position of a control point 

leads to global changes of the curve.
 (The evaluation of high order polynomials 

expressed as monomials leads to numerical 
problems.)

 No control of the slopes at the boundary of the 
curve (start and finish).
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Splines
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Splines

 Motivation
Let us imagine that we have many (100's of) 
control points

 But we don't want a Lagrange interpolation !
 We should stay with a low order scheme but 

conserve enough freedom to pass through every 
point

 Curve defined by pieces ... and of low order (1) 
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Splines

 We are going to build a low order interpolation 
for each knot interval, such that we can impose 
slopes at the knots.

u=u
i+1

u=u
i

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1
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Splines

 In each range [i,i+1] , we want to have an 
independent polynomial

 We have 4 parameters : position at each knot 
and associated tangents.

 The basis must have 4 degrees of freedom, thus be 
of order 3 in the case of polynomials.

x [i ]u=A[ i ]0A[ i ]1 uA[ i ]2 u2A[i ]3 u3 , u∈[ui , ui1]

P (ui)=P i ≡ {x (ui)=x i

y (ui)= y i

...
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Splines

 First, every interval has a unit length i.e. 

 Then we ensure identical intervals [0...1] between 
each interpolation point :

 On each interval  i , we thus have the following 
relation:

ui1−ui=1

u=
u−ui

u i1−ui

=u−ui

x[ i ](ū)=a[ i ]0+a[ i ]1 ū+a[ i ]2 ū2+a[ i ]3 ū3 , ū∈[0,1]

d u
du

=1
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Splines

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1

u=0

u=1
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Splines

 We pass through both control points:

 We impose both slopes :

 At the end :

P (ū=0)=P i⇔a[ i ]0+a[ i ]1 ū+a[ i ]2 ū2+a[ i ]3 ū3=x i

P (ū=1)=P i+1⇔a[ i ]0+a[ i ]1 ū+a[ i ]2 ū2+a[ i ]3 ū3=x i+1

P '(ū0=0)=P 'i⇔a[ i ]1+2 a[ i ]2 ū+3 a[i ]3 ū2=xi
'

P '(ū=1)=P 'i+1⇔a[ i ]1+2 a[ i ]2 ū+3 a[ i ]3 ū2=xi+1
'

{a[i ]0=xi

a[i ]1=x i
'

a[i ]2=3 xi1−x i−2 xi
' −x i1

'

a[i ]3=2xi−x i1xi
'x i1

'
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Splines

 We have continuity
 We have continuity of the derivatives
 But how to choose the slopes ?

 Let the user choose ( “artistic” freedom)
 Automatically ...
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Splines

 By finite differences with three points :

 At the boundaries, we use finite differences (asymmetric)

 The result depends on the parametrization !
 Cardinal spline

 c is a « tension » parameter. c=0 gives yields the so called 
“Catmull-Rom” spline, c=1 a zigzagging line.

x i
'=

xi1−xi

2 ui1−ui


xi−xi−1

2 ui−ui−1

x0
' =

x1−x0

u1−u0

xn−1
' =

xn−1−xn−2

un−1−un−2

x i
'=1−c

x i1−xi−1

2
 , 0≤c≤1

x0
' =(1−c)(x1− x0)

xn−1
' =(1−c)(xn−1−xn−2)
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Splines

5 points, finite differences by varying the parametrization 
[0..1] , [0..2] , [0..5] , [0..10]

Continuity of the curve/parameter 
but loss of regularity (and of geometric continuity
in many cases)
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Splines

5 points, Cardinal Spline (Catmull-Rom)  c=0
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Splines

Catmull-Rom Splines are widely used in computer graphics
 Simple to compute, effective
 Local control (price to pay : discontinuous secd derivative)
 Animations with keyframing

 Ensures a fluid motion because of the continuity of the slope
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Splines

5 points, Cardinal Spline c=0.25
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Splines

5 points, Cardinal Spline c=0.5
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Splines

5 points, Cardinal Spline c=0.75
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Splines

5 points, Cardinal Spline c=1.0
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Splines

 We can impose the continuity of second derivatives...
 On a curve with n points, we have n extra relations to 

impose
 We may impose the continuity of the second derivative only 

on the  n-2 interior knots

What about the 2 points on the boundary ?
 Impose a vanishing second derivative.

We obtain what is called  « natural spline »
 We could also impose the slopes (i.e. only n-2 relations remaining)
 Or , impose that the third derivative is zero on the points 1 and n-2

 That means a single polynomial expression for the first two knot 
intervals, and the last two.
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Splines

 Natural Spline : mathematical approximation of the 
spline historically used in naval construction.

C
. D

eB
oor
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Splines

B
oein

g
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Splines

 We impose the continuity of the second derivatives

 We substitute in the “internal” equations

 Finally we obtain : 

x[ i−1]
'' 1=x [i ]

'' 0⇔2a[ i−1]26a[ i−1]3=2a[ i ]2

2 [3x i−x i−1−2 x i−1
' −x i

' ]6 [2x i−1−x ix i−1
' x i

' ]
=2 [3 x i1−x i−2 x i

'−x i1
' ]

x i−1
' 4 x i

'x i1
' =3xi1−x i−1
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Splines

 At the boundaries we want

 We have then a linear system with n unknowns :

x [0]
'' 0=0⇔2a[0]2=0

x [n−2]
'' 1=0⇔2a[n−2]26a[n−2]3=0

2 x0
' x1

' =3x1−x0
xn−2

' 2 xn−1
' =3xn−1−xn−2

2 1
1 4 1

1 4 1
⋱
1 4 1

1 2
 

x0
'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

=
3x1−x0
3 x2−x0
3x3−x1

⋮
3xn−1−xn−3
3 xn−1−xn−2
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Splines

 By solving the system, we have :

 , which is substituted in

,to get the polynomial in each portion :

From the global parameter u, we have to find in which portion we are ( the 
value of i ) , then compute right polynomial...


x0

'

x1
'

x2
'

⋮
xn−2

'

xn−1
'

 {a[i ]0=xi

a[i ]1=x i
'

a[i ]2=3 xi1−x i−2 xi
' −x i1

'

a[i ]3=2xi−x i1xi
'x i1

'

x [i ]u=a[i ]0a[i ]1ua[ i ]2 u
2a[i ]3 u

3  , 0≤u1
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Splines

5 control points, natural spline

Catmull-Rom spline
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Splines

 Another experiment
 We approximate a circle  by a number of increasing 

points
 Simultaneously , the order of the approximation  the 

number of pieces increases.

 In all the cases, the curve is C C
2
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Splines

3 points, order 3!
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Splines

5 points
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Splines

11 points
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Splines

21 points
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Splines

 Random perturbation
 Each point is moved radially by a value between -

0.5 and +0.5 % of the circle's radius
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Splines

3 points, random perturbation 1%



62

CAD & Computational Geometry

Splines

5 points, random perturbation 1%
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Splines

11 points, random perturbation 1%
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Splines

21 points, random perturbation 1%
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Splines

 Deterministic perturbation
 Each point is shifted radially depending on its 

position by -5 or +5 % of the circle's radius
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Splines

3 points, deterministic perturbation 5%
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Splines

5 points, deterministic perturbation 5%
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Splines

11 points, deterministic perturbation 5%



69

CAD & Computational Geometry

Splines

21 points, deterministic perturbation 5%
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Splines

11 points

non local 
control
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Splines
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Splines

 Perturbation of a point
 We shift one point by a significant amount
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Splines

21 points
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99 points

Splines
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Splines

999 points
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Splines

 Stable interpolation scheme
 Weak Runge phenomenon
 The displacement of a point yet affects all the 

curve
 Nevertheless, the perturbation fades very quickly 

further away from the shifted point
 « Overshoots » are limited.
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Splines

 Closed curve ?
 The curve can be closed, just impose everywhere 

that the second derivative is continuous.
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Splines

 Instead of 

... we have 

(
4 1 1
1 4 1

1 4 1
⋱
1 4 1

1 1 4
)(

x0
'

x1
'

x2
'

⋮
xn−3

'

xn−2
'

)=(
3(x1−xn−2)
3(x2−x0)
3(x3−x1)

⋮
3( xn−2− xn−4)
3(x0−xn−3)

)
x[n−2]

'' (1)=x[0 ]
'' (0)⇔2a[n−2 ]2+6a[n−2 ]3=2a [0]2

x [0]
'' 0=0⇔2a[0]2=0

x [n−2]
'' 1=0⇔2a[n−2]26a[n−2]3=0

Circulant
matrix

xn−1=x0

xn−1
' =x0

'and
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Splines

 General case : arbitrary parametrization

 We again change the parametrization...

P (ui)=P i ≡ {x (ui)= xi

y (ui)= y i

x[ i ](u)=A[ i ]0+ A[ i ]1 u+A[ i ]2 u2+ A[ i ]3 u3 , u∈[ui , ui+1]

ū=
u−ui

ui+1−ui

x[ i ](ū)=a[ i ]0+a[ i ]1 ū+a[ i ]2 ū2+a[ i ]3 ū3 , ū∈[0,1]

d ū
du

= 1
ui+1−ui

= 1
hi
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Splines

 We pass through both points :

 We impose both slopes :

 Finally :

P u0=0=P i⇔a[i ]0a[i ]1 u0a[i ]2u0
2a[i ]3 u0

3=xi

P u1=1=Pi1⇔a[i ]0a[i ]1 u1a[i ]2 u1
2a[i ]3 u1

3=x i1

P 'u0=0=d P
d u

0=d P
d u

01
hi

=P 'i⇔a[i ]12a [i ]2 u03a [i ]3u0
2=x i

' hi

P 'u1=1=d P
d u

1=d P
d u

11
hi

=P 'i1⇔a[i ]12a[i ]2 u13a[i ]3 u1
2=x i1

' hi

{a[i ]0=x i

a[i ]1=x i
' hi

a[i ]2=3 x i1− xi−2 x i
' hi−x i1

' hi

a[i ]3=2 x i−x i1x i
' hix i1

' hi
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Splines

 We impose the second derivative for a natural 
spline 

 We substitute in the internal equations

d 2 P [i ]

du2 u=
d 2 P[i ]

d u
2

d 2
u

d u2 =
d 2 P [i ]

d u
2

1

hi
2

2 [3 xi−x i−1−2 x i−1
' hi−1−x i

' hi−1]6 [2x i−1−x ix i−1
' hi−1x i

' hi−1]

hi−1
2

=
2 [3 x i1−x i−2 x i

' hi−x i1
' hi]

hi
2

x[i−1]
'' 1=x[i ]

'' 0⇔
2a[i−1]26a [i−1]3

hi−1
2

=
2a [i ]2

hi
2
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Splines

 We obtain finally :

x i−1
' 2 x i

'

hi−1


2 x i

'x i1
'

hi

=3
 x i−x i−1

hi−1
2

3
 x i1−x i

hi
2

hi  x i−1
' 2 x i

' hi−12 xi
' xi1

' =3
hi

hi−1

x i−x i−13
hi−1

hi

 x i1−x i
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Splines

 At the boundaries we want a vanishing second 
derivative …

 We have then a linear system of n unknowns:

(next page)

x[0]
'' (0)=0⇔

2a [0]2

(h0
2)

=0

x[n−2]
'' (1)=0⇔

2a[n−2 ]2+6a[n−2 ]3

(hn−2
2 )

=0

h0(2 x0
' + x1

' )=3(x1−x0)
hn−2(xn−2

' +2 xn−1
' )=3(xn−1−xn−2)
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Splines

(
2 h0 h0

h1 2 h1+2 h0 h0

⋱
hn−2 2 hn−2+2 hn−3 hn−3

hn−2 2 hn−2

)(
x0

'

x1
'

⋮
xn−2

'

xn−1
'

)=

(
3(x1−x0)

3
h1

h0

(x1− x0)+3
h0

h1

(x2−x1)

⋮

3
hn−2

hn−3

(xn−2−xn−3)+3
hn−3

hn−2

(xn−1−xn−2)

3(xn−1−xn−2)
)



85

CAD & Computational Geometry

Splines

Natural Spline
(uniform parametrization) 

Natural Spline
(non uniform parametrization) 

u=0

u=1

u=2

u=4

u=5

u=3

u=4
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Splines

 Compact notation
 We would like a compact representation as for the 

Lagrange interpolation.

This on each interval [i,i+1].

x[ i ](ū)=a[ i ]0+a[ i ]1 ū+a[ i ]2 ū2+a[ i ]3 ū3

 0≤ū<1

{x[ i ](ū)=∑
0

n

xi hi 0
p (ū)+∑

0

n

x i
' hi 1

p (ū)

y[ i ](ū)=∑
0

n

yi hi 0
p (ū)+∑

0

n

y i
' hi 1

p (ū)

...

⇔ P[i ](ū)=∑
0

n

P i hi 0
p (ū)+∑

0

n

Pi
' hi 1

p (ū)

{a[i ]0=xi

a[i ]1=x i
'

a[i ]2=3 xi1−x i−2 xi
' −x i1

'

a[i ]3=2xi−x i1xi
'x i1

'
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Splines

 We have on each interval :

 By rearranging equations

{a[i ]0=xi

a[i ]1=x i
'

a[i ]2=3 xi1−x i−2 xi
' −x i1

'

a[i ]3=2xi−x i1xi
'x i1

'

x [i ]u=xix i
'
u3x i1−x i−2 x i

'−xi1
'  u

22 xi−x i1xi
'x i1

' u
3

x [i ]u=xi 1−3u
22u

3x i
' u−2u

2u
3

x i13u2−2 u3xi1
' −u2u3
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Splines

 3D Curves
 Minimal order so that a curve can have a torsion 

(non planar curve)
 Let's consider a Lagrange interpolation
 2 points → on a straight line  (no curvature)
 3 points → in a plane (no torsion)
 4 points → torsion becomes possible

 Minimal order to join smoothly two arbitrarily 
oriented curves  = 3

P u=∑
i=0

n−1

P i l i
p u


