

LIÈGE CAD & Computational Geometry université

CAD&CG course

Masters in engineering

LIEGE CAD & Computational Geometry

- The course is given in 2023-2024 if there are enough students (5)
- In that case, it will **not** be given in 2024-2025.
 Next session is 2025-2026

Please contact me if you are interested

E. Bechet

LIEGE CAD & Computational Geometry

Eric Béchet (it's me!)

- Engineering studies in Nancy (Fr.)
- Ph.D in Montréal (Can.)
- Academic career in Nantes as Post-doc then ass. Prof. in Metz (Fr.) then Liège...

Alex Bolyn

Assistant (Ph.D. student) at our university

Website http://www.cgeo.ulg.ac.be/CADCG

Contacts: eric.bechet@uliege.be a.bolyn@uliege.be

LIEGE CAD & Computational Geometry **Procedures**

- Ex-Cathedra lectures (~2h)
- Practical sessions
 - Programming (~8 2h-sessions)
- Practical assessment : practical works (pw) are rated.
- Project (pr)
- The practical sessions, and the project are all mandatory. The final mark m=1/3pw+2/3pr. over 10 to pass & get the credits for the course.

LIEGE CAD & Computational Geometry

Procedures

- Lectures are given on wednesday, 1:45 PM Lecture room is B52 +2/441 (or B52 +2/438 if few students)
- Begins today
- Practical work begins Sept. 27th after the course (check website for more dates & info)
- Any question: I am available mostly Fridays, appointment via email or phone: 04-366-9165
 Office: Bldg B52 +2/438

► LIÈGE CAD & Computational Geometry université **Course Outline**

- Introduction
 - Brief History of CAD Systems
- Generalities about Parametric Forms
 - Curves
 - Surfaces
- Some Practical Ways to represent Curves and Surfaces in CAD Systems
 - Cubic Splines
 - Bézier Curves
 - B-Splines

LIEGE CAD & Computational Geometry **Course Outline**

- Solid Modeling in CAD systems
 - B-REP Models
- Computational Geometry
 - Convex Hull Problems
 - Geometric Search
 - Delaunay Triangulation
 - Mesh Generation

LIEGE CAD & Computational Geometry Introduction

CAD/CAM – Computer Aided Design / Computer Aided Manufacturing

- Development since the 1950s-1960s
 - Iso Schoenberg (at U-Wisconsin) splines (40's)
 - First « interactive » CAD graphic engine at the MIT (I. Sutherland, Sketchpad) – 60's
 - James Ferguson (at Boeing) splines (60's)
 - Paul De Casteljau (at Citroën) Bézier curves (50's)
 - Pierre Bézier (at Renault) –
 - Carl De Boor (at GM / U-Wisconsin) B-Splines (70's)
 - Catia, Unigraphics (now Siemens NX) date back to the mid-70's, emergence of 3d modeling kernels on mainframes.
- Huge expansion in the 80's with cheap personal computers becoming ubiquitous.

LIÈGE CAD & Computational Geometry université Introduction

Sketchpad (Ivan Sutherland) – 1963

LIEGE CAD & Computational Geometry Introduction

- Computational geometry
 - As old as ways to represent geometrical entities on a computer
 - Focus in this course
 - Use CAD as an initial geometrical database
 - Define operations in this setting and show how to perform them efficiently – or not!
 - Focus is made on applications in scientific computing, e.g. mesh generation, ...

LIEGE CAD & Computational Geometry Introduction

- Old mathematical and theoretical bases
- Practical framework has been developed because of industrial needs.
- In return, it has contributed at the theoretical level.

LIÈGE CAD & Computational Geometry université

Parametric representation

LIÈGE CAD & Computational Geometry **Parametric representation**

Use of scalar parameters to "walk" on the curve/surface

- The number of those scalars determine the dimension of the entity and the mapping from one space (the parametric space to the other (usually cartesian) space.
 - 0 Point , 1 (u) Curve , 2 (u,v) Surface 3(u,v,w) – Volume (transformation used for finite elements)
- We associate to those scalars some function for each of the space coordinates (x,y in the plane; x,y,z in 3D)

$$\vec{P}(u) = \begin{cases} x = f(u) \\ y = g(u) \\ z = h(u) \end{cases} \text{ or } \vec{P}(u, v) = \begin{cases} x = f(u, v) \\ y = g(u, v) \\ z = h(u, v) \end{cases}$$

LIÈGE CAD & Computational Geometry université **Parametric representation**

Parametric curves

LIEGE CAD & Computational Geometry Parametric representation

For a curve, the representation takes the

following form:

$$\vec{P}(u) = \begin{cases} x = f(u) \\ y = g(u) \\ z = h(u) \end{cases}$$

u is a real parameter.

- We obtain all the points of the curve by varying u.
- The parametrization is not unique!
- The parameter u can be limited (limits of the curve)

LIEGE CAD & Computational Geometry université

Parametric representation

Continuity of the parametrization

- A parametric curve is said to be C_k if the parametrization P(u) is C_k (i.e. the k^{th} derivative is continuous)
 - However : a parametric curve of class C_{∞} may have an angular point... (i.e. some continuity of the parametrization does not necessarily involve the same **geometric** continuity of the resulting curve!)

$$\vec{P}(u) = \begin{cases} x = u^3 \\ y = u^2 \end{cases}$$

► LIEGE CAD & Computational Geometry université **Parametric representation**

Regularity of the parametrization

- A parametric curve P(u) is regular if the first derivative P'(u) does not vanish at any place on all the interval of definition.
- On the contrary, points where P'(u) vanishes, are called *singular* points.
- A given curve can admit two parametric forms such that one is regular and the other one isn't...
 - Example : curve $y=x^2$ with two parametric forms P(u) and

$$\vec{P}(u) = \begin{cases} x = u \\ y = u^2 \end{cases} \quad \vec{P}(u = 0) = \begin{cases} 1 \\ 0 \end{cases} \quad \vec{Q}(v) = \begin{cases} x = v^3 \\ y = v^6 \end{cases} \quad \vec{Q}(v = 0) = \begin{cases} 0 \\ 0 \end{cases}$$

LIÈGE CAD & Computational Geometry **Parametric representation**

Regularity and continuity of the parametrization

- A curve of geometric continuity G_{ι} can be described by a parametrization that is non- C_{ι}
- A curve of parametrization C_i may not be G_i
- A curve admitting singular points can be G_{ι} and/or C_{ι} .
- A regular curve is not necessary C_{ι} and/or G_{ι} .

To conclude:

 Parametric continuity, geometric continuity, and regularity are all relatively independent notions!

► LIEGE CAD & Computational Geometry université **Parametric representation**

C_k -equivalent parametric forms

• Two parametric forms P(u) and Q(v) of the same curve are C_k - equivalents if there is a bijective function φ of class C_k whose reciprocal is also of class C_k and such that:

$$v = \varphi(u)$$
 $\vec{P}(u) = \vec{Q}(\varphi(u))$

► LIEGE CAD & Computational Geometry université **Parametric representation**

Length of a regular curve

It is a measure that is independent of the parametrization (provided that those are C_1 equivalent)

$$L = \int_{a}^{b} |\vec{P}'(u)| du = \int_{c=\varphi(a)}^{d=\varphi(b)} |\vec{Q}'(v)| dv$$

LIEGE CAD & Computational Geometry **Parametric representation**

Natural parametrization

It is a parametrization s such that :

- s is also named curvilinear abscissa along the curve.
- It can be built from any regular parametrization u of the curve:

$$s(u) = \int_{A}^{u} \left| \vec{P}'(t) \right| dt$$

LIEGE CAD & Computational Geometry université

Parametric representation

Parametrization of a circle in the plane :

$$\begin{cases} x = r \cos u \\ y = r \sin u \end{cases}, \quad u \in [0, 2\pi[$$

Natural parametrization of the same circle...

$$\begin{cases} x = r \cos \frac{S}{r} \\ y = r \sin \frac{S}{r} \end{cases}, \quad s \in [0, 2\pi r] \qquad s = r u$$

► LIEGE CAD & Computational Geometry université

Parametric representation

Differential geometry for parametric curves

Position
$$P:$$

$$P(u) = \begin{pmatrix} x(u) \\ y(u) \\ z(u) \end{pmatrix} \quad P' = \frac{dP}{du} \quad P'' = \frac{d^2P}{du^2}$$

Tangent vector T:

$$T(u) = \frac{dP}{ds} = \frac{dP}{du} \cdot \frac{du}{ds} = \frac{P'}{|P'|}$$

Normal vector N:

$$N(u) = \frac{Norm(u)}{|Norm(u)|} \text{ with } Norm(u) = P'' - (P'' \cdot T)T$$
(It is not defined when $Norm(u) = 0$!)

Binormal vector B:

$$B(u) = T(u) \times N(u)$$

LIEGE CAD & Computational Geometry université

B(s)

Parametric representation

Frenet's frame and equations

$$\begin{vmatrix} 0 \\ -\kappa(s) \\ 0 \end{vmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{bmatrix} \cdot \begin{bmatrix} T(s) \\ N(s) \\ B(s) \end{bmatrix}$$

Works only with s: the curvilinear abscissa!

► LIEGE CAD & Computational Geometry université

Parametric representation

Curvature κ :

$$\kappa(u) = N(s) \cdot \frac{dT}{ds} = \frac{T'(u) \cdot N(u)}{|P'(u)|}$$

 $|\kappa| = \left| \frac{dT}{ds} \right| = \frac{|P \times P''|}{|P'|^3}$

Curvature vector

 $=N(u)\kappa(u)$

Torsion τ:

$$\tau(u) = \frac{N'(u) \cdot B(u)}{|P'(u)|} \qquad \tau = \frac{\left(\frac{d^2 T}{ds^2}, \frac{dT}{ds}, T\right)}{|\kappa^2|} = \frac{\left(P''', P'', P'\right)}{|P' \times P''|^2}$$

LIÈGE CAD & Computational Geometry université **Parametric representation**

Parametric surfaces

LIEGE CAD & Computational Geometry **Parametric representation**

A parametric surface is represented as:

$$\vec{P}(u,v) = \begin{cases} x = f(u,v) \\ y = g(u,v) \\ z = h(u,v) \end{cases}$$

 All the points of the surface can be obtained by varying u and v.

 χ

- Again, the parametrization is not unique!
- The interval of definition is limited (limits the surface)

LIEGE CAD & Computational Geometry **Parametric representation**

A curve can be defined on the surface

Parametric space

$$\vec{\Gamma}^{uv}(t):\begin{cases} u=u(t) \\ v=v(t) \end{cases} \rightarrow \vec{P}(u,v):\begin{cases} x=f(u,v) \\ y=g(u,v) \\ z=h(u,v) \end{cases}$$

$$\vec{\Gamma}(t) : \begin{cases} x = f(u(t), v(t)) \\ y = g(u(t), v(t)) \\ z = h(u(t), v(t)) \end{cases}$$

 The equations seen for parametric curves are valid in this particular case.

 $\boldsymbol{\chi}$

LIEGE CAD & Computational Geometry

Parametric representation

Regularity and continuity of the parametrization

- A parametric surface is of class C_k if the mapping P(u,v) onto \mathbb{R}^3 is of class C_k .
- A parametrization is regular if and only if (iff)

$$\frac{\partial \vec{P}}{\partial u}(u_0, v_0) \times \frac{\partial \vec{P}}{\partial v}(u_0, v_0) \neq \vec{0} \quad \forall (u_0, v_0) \in D \subset \mathbb{R}^2$$

- The points on the parametric space for which it is not the case are called singular points.
- C_k—equivalent parametric forms follow the same definitions as for curves

LIEGE CAD & Computational Geometry

Parametric representation

Differential geometry for parametric surfaces

• Position
$$P: \vec{P}(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix} \quad \vec{P}^{u} = \frac{\partial \vec{P}}{\partial u} \quad \vec{P}^{uv} = \frac{\partial^{2} \vec{P}}{\partial u \partial v} \quad \cdots$$

• Unit tangent vectors T^{u} and T^{v} :

$$\vec{T}^{\mathrm{u}}(u,v) = \frac{\partial P}{\partial u} \cdot \left| \frac{\partial P}{\partial u} \right|^{-1} = \frac{P^{\mathrm{u}}}{|P^{\mathrm{u}}|} \qquad \vec{T}^{\mathrm{v}}(u,v) = \frac{\partial P}{\partial v} \cdot \left| \frac{\partial P}{\partial v} \right|^{-1} = \frac{P^{\mathrm{v}}}{|P^{\mathrm{v}}|}$$

- These vectors are, in general, not orthogonal!
- Tangent plane (parametric form)

$$\overrightarrow{Pt}_{(u_0,v_0)}(a,b) = \overrightarrow{P}(u_0,v_0) + a \cdot \overrightarrow{T}^{\mathrm{u}}(u_0,v_0) + b \cdot \overrightarrow{T}^{\mathrm{v}}(u_0,v_0)$$

or

$$(a,b) \in \mathbb{R}^2$$

$$\vec{P}t_{(u_0,v_0)}(a,b) = \vec{P}(u_0,v_0) + a \cdot \vec{P}^{u}(u_0,v_0) + b \cdot \vec{P}^{v}(u_0,v_0)$$

LIEGE CAD & Computational Geometry université **Parametric representation**

Normal vector N:

$$N(u, v) = \frac{Norm(u, v)}{|Norm(u, v)|} \text{ with } Norm(u, v) = T^{u} \times T^{v} \text{ or } P^{u} \times P^{v}$$

LIEGE CAD & Computational Geometry

Parametric representation

Area of a surface

$$A = \iint_{\Omega} dS$$
$$dS = |du \cdot P^{u} \times dv \cdot P^{v}| = |P^{u} \times P^{v}| dudv$$

1st fundamental form

Other notation of the area of a surface

$$|\vec{a} \times \vec{b}|^2 = (\vec{a} \cdot \vec{a}) \cdot (\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})^2$$
 Lagrange's identity
$$dS = \sqrt{(eg - f^2)} dudv \text{ with } e = P^u \cdot P^u \text{ , } f = P^u \cdot P^v \text{ , } g = P^v \cdot P^v$$

$$A = \iint_D \sqrt{(eg - f^2)} dudv$$

► LIEGE CAD & Computational Geometry université

Parametric representation

Length of a curve on a surface

$$\vec{P}(u,v): \begin{cases} x = f(u,v) & P^{u} = \frac{\partial P(u,v)}{\partial u} \\ y = g(u,v) \\ z = h(u,v) & P^{v} = \frac{\partial P(u,v)}{\partial v} \end{cases}$$

$$\vec{\Gamma}^{uv}(t): \begin{cases} u = u(t) \\ v = v(t) \end{cases} \quad \vec{\Gamma}(t): \begin{cases} x = f(u(t), v(t)) \\ y = g(u(t), v(t)) \\ z = h(u(t), v(t)) \end{cases} \quad \vec{\Gamma}' = \frac{dP(u(t), v(t))}{dt}$$

$$\Gamma' = \frac{\partial P(u(t), v(t))}{\partial u} \frac{du}{dt} + \frac{\partial P(u(t), v(t))}{\partial v} \frac{dv}{dt}$$

Derivative of the curve expressed in the parametric space of the surface

Derivative of the surface (in 3D)

$$\Gamma'(t) = u'(t) P^{u}(u(t), v(t)) + v'(t) P^{v}(u(t), v(t))$$

LIEGE CAD & Computational Geometry **Parametric representation**

$$L = \int_{a}^{b} |\vec{\Gamma}'(t)| dt = \int_{a}^{b} \sqrt{|\vec{\Gamma}'(t)|^{2}} dt$$

$$\Gamma'(t) = u'(t) P^{u}(u(t), v(t)) + v'(t) P^{v}(u(t), v(t))$$

$$|\Gamma'(t)|^{2} = e u'(t)^{2} + 2 f u'(t) v'(t) + g v'(t)^{2}$$
with $e = P^{u} \cdot P^{u}$, $f = P^{u} \cdot P^{v}$, $g = P^{v} \cdot P^{v}$

► LIEGE CAD & Computational Geometry université Parametric representation

If we set

$$ds = \sqrt{e \, u'(t)^2 + 2 \, f \, u'(t) \, v'(t) + g \, v'(t)^2} \, dt$$

that is equivalent to : $ds = \sqrt{e \, du^2 + 2 \, f \, du dv + g \, dv^2}$
(we have $L = \int_{s(a)}^{s(b)} ds = s(b) - s(a)$)

, we get a quadratic form :

$$e u'(t)^{2} + 2 f u'(t) v'(t) + g v'(t)^{2} = \left(u'(t) \quad v'(t)\right) \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix}$$

$$L = \int_{a}^{b} \sqrt{\left(u'(t) \quad v'(t)\right) \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix}} dt$$

► LIEGE CAD & Computational Geometry université **Parametric representation**

Angle between two curves ...

$$\Gamma_{1}^{'}(t_{1}) \cdot \Gamma_{2}^{'}(t_{2}) = |\Gamma_{1}^{'}(t_{1})| |\Gamma_{2}^{'}(t_{2})| \cos \alpha = \left(u_{1}^{'}(t_{1}) \quad v_{1}^{'}(t_{1})\right) \left(\begin{matrix} e & f \\ f & g \end{matrix}\right) \left(\begin{matrix} u_{2}^{'}(t_{2}) \\ v_{2}^{'}(t_{2}) \end{matrix}\right)$$

$$\left(u_1'(t_1) \quad v_1'(t_1) \right) \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} u_2'(t_2) \\ v_2'(t_2) \end{pmatrix}$$

$$\cos \alpha = -$$

$$\sqrt{\left(u_{1}^{'}(t_{1}) \quad v_{1}^{'}(t_{1})\right)\left(\begin{matrix} e & f \\ f & g\end{matrix}\right)\left(\begin{matrix} u_{1}^{'}(t_{1}) \\ v_{1}^{'}(t_{1})\end{matrix}\right)\left(\begin{matrix} u_{2}^{'}(t_{2}) \quad v_{2}^{'}(t_{2})\end{matrix}\right)\left(\begin{matrix} e & f \\ f & g\end{matrix}\right)\left(\begin{matrix} u_{2}^{'}(t_{2}) \\ v_{2}^{'}(t_{2})\end{matrix}\right)}$$

LIEGE CAD & Computational Geometry

Parametric representation

• The first fundamental form is the application :

$$\varphi_{1}(d \Gamma_{1}^{uv}, d \Gamma_{2}^{uv}) = \begin{pmatrix} du_{1} & dv_{1} \end{pmatrix} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} du_{2} \\ dv_{2} \end{pmatrix} = \begin{pmatrix} du_{1} & dv_{1} \end{pmatrix} \mathbf{M}_{1} \begin{pmatrix} du_{2} \\ dv_{2} \end{pmatrix}$$
with $e = P^{u} \cdot P^{u}$, $f = P^{u} \cdot P^{v}$, $g = P^{v} \cdot P^{v}$

- It is a symmetric bilinear form that allows to measure real distances from variations in the parametric space...
- The matrix M₁ is a representation of the metric tensor, often noted g_{ii} , i, j=u, v
- M₁ also is related to the Jacobian matrix $J = \begin{vmatrix} \partial x/\partial u & \partial x/\partial v \\ \partial y/\partial u & \partial y/\partial v \\ \partial z/\partial u & \partial z/\partial v \end{vmatrix}$ of the transformation $(u,v) \to (x,y,z)$ (it is J^TJ).

$$L = \int_{a}^{b} \sqrt{\varphi(d \Gamma^{uv}, d \Gamma^{uv})} dt \qquad \cos \alpha = \frac{\varphi(d \Gamma_{1}^{uv}, d \Gamma_{2}^{uv})}{\sqrt{\varphi(d \Gamma_{1}^{uv}, d \Gamma_{1}^{uv})} \varphi(d \Gamma_{2}^{uv}, d \Gamma_{2}^{uv})}$$

$$A = \iint_{D} \sqrt{\det M_{1}} du dv \qquad \left(= \iint_{D} \det J du dv \text{ under some conditions} \right)$$

LIÈGE CAD & Computational Geometry université **Parametric representation**

Parametric representation

P(u,v)

 $G = N \times T$

Curvature vectors

$$k = \frac{dT}{ds} = \kappa \cdot n = k_n + k_g \text{ (e.g. from Frenet's relations)}$$

$$k_n = \kappa_n \cdot N \quad k_g = \kappa_g \cdot G$$

- Necessarily, we do have: $N \cdot T = 0$
- Differentiating yields :

$$\frac{d\mathbf{T}}{ds} \cdot \mathbf{N} + \mathbf{T} \cdot \frac{d\mathbf{N}}{ds} = 0$$

$$\kappa_n = \frac{d \mathbf{T}}{ds} \cdot \mathbf{N} = -\mathbf{T} \cdot \frac{d \mathbf{N}}{ds} \qquad \left(\kappa_g = \frac{d \mathbf{T}}{ds} \cdot \mathbf{G} \right) \begin{pmatrix} ds = \sqrt{e \, du^2 + 2 \, f \, du \, dv + g \, dv^2} \end{pmatrix}$$

$$= -\frac{d P(u, v)}{ds} \cdot \frac{d N}{ds} = -\frac{d P \cdot d N}{ds^2} = \frac{l du^2 + 2 m du dv + n dv^2}{e du^2 + 2 f du dv + g dv^2}$$
with

$$l = -\frac{dP}{du} \cdot \frac{dN}{du} \quad m = -\frac{1}{2} \left(\frac{dP}{du} \cdot \frac{dN}{dv} + \frac{dP}{dv} \cdot \frac{dN}{du} \right) \quad n = -\frac{dP}{dv} \cdot \frac{dN}{dv}$$

Center of curvatur

$$l = -\frac{dP}{du} \cdot \frac{dN}{du} \quad m = -\frac{1}{2} \left(\frac{dP}{du} \cdot \frac{dN}{dv} + \frac{dP}{dv} \cdot \frac{dN}{du} \right) \quad n = -\frac{dP}{dv} \cdot \frac{dN}{dv}$$

This can be rewritten by noting that

$$\frac{dP}{du} \cdot N = 0$$
 and $\frac{dP}{dv} \cdot N = 0$

, and integrating by parts $UV = \int U dV + \int V dU$

where e.g. for
$$l$$
: $U = \frac{dP}{du}$ $dV = \frac{dN}{du} \cdot du$

$$l = \frac{d^2 P}{du^2} \cdot N \qquad m = \frac{d^2 P}{du \, dv} \cdot N \qquad n = \frac{d^2 P}{dv^2} \cdot N$$

Curvatures and the second fundamental form

The second fundamental form is the application

$$\varphi_{2}(d \Gamma_{1}^{uv}, d \Gamma_{2}^{uv}) = (du_{1} \quad dv_{1}) \begin{pmatrix} l & m \\ m & n \end{pmatrix} \begin{pmatrix} du_{2} \\ dv_{2} \end{pmatrix} = (du_{1} \quad dv_{1}) \mathbf{M}_{2} \begin{pmatrix} du_{2} \\ dv_{2} \end{pmatrix}$$
with $l = N \cdot P^{uu}$, $n = N \cdot P^{vv}$, $m = N \cdot P^{uv}$

Normal curvature of a curve on a surface :

$$\kappa_{n} = \frac{\varphi_{2}(d\Gamma^{uv}, d\Gamma^{uv})}{ds^{2}} \qquad \kappa_{n} = \frac{\varphi_{2}(d\Gamma^{uv}, d\Gamma^{uv})}{\varphi_{1}(d\Gamma^{uv}, d\Gamma^{uv})}$$

- Geodesic curvature (curvature in the tangent plane)
 - Measures the deviation of the curve in comparison with a geodesic

Definition of the geodesic

- It is a curve with a minimal length on a surface.
 - In the plane, those are lines
 - On a sphere, great circles
 - By definition, the geodesic has no geodesic curvature. Relations between « simple » curvature, geodesic curvature and normal curvature is obtained from the curvature vectors

$$k = k_n + k_g$$
 $k_n = \kappa_n \cdot N$ $k = \kappa \cdot n$ $k_g = \kappa_g \cdot (N \times T) = \kappa_g \cdot G$
 $\kappa^2 = \kappa_n^2 + \kappa_g^2$

The geodesic curvature is therefore readily obtained from the others (except for the sign, which is same as $\frac{d T}{dt} \cdot G$) $\kappa_o^2 = \kappa^2 - \kappa_n^2$

A circle of radius R in the plane

Curvature $\kappa = 1/R$

Geodesic curvature $\kappa_g = 1/R$

Normal curvature $\kappa_n = 0$

A equatorial circle on a sphere of radius R

Curvature $\kappa = 1/R$

Geodesic curvature $\kappa_g = 0$

Normal curvature $\kappa_n = 1/R$

In the previous slides, κ is the curvature of the curve in 3D (not in the parametric space !!!)

Parametric representation

- Curvatures of the surface $\kappa_n = \frac{\varphi_2(d \Gamma^{uv}, d \Gamma^{uv})}{\varphi_1(d \Gamma^{uv}, d \Gamma^{uv})}$
 - The normal curvature κ_n at a point only depends on the local orientation of Γ on the surface. If we sweep through all the orientations, this curvature passes by a minimum κ_{min} then a maximum κ_{max} for two perpendicular directions.
 - These directions and the particular values of κ_n are respectively called principal directions and principal curvatures of the surface. They do not depend on the parametrization of the surface...
 - They are the solution of an eigenvalue problem.
 - The Shape operator (also called Weingarten Map) plays a key role here, see what follows.

Parametric representation

- The shape operator $W_p(w) = -\nabla_w \cdot N$ $w = w_u \cdot P_u + w_v \cdot P_v$
 - Here, N is the normal to the surface, p is a point on the surface, w is a tangent unit vector to the surface at p. ∇_{w} is a directional derivative along w (in the surface):

it is equal to $w_u \frac{\partial}{\partial u} + w_v \frac{\partial}{\partial v}$.

This operator gives back a vector in the tangent plane.

Parametric representation

- The shape operator $W_p(w) = -\nabla_w \cdot N$
 - If one uses an orthonormal basis, eigenvectors are easy to compute as the operator is **symmetric**...
 - Let's build such an orthonormal basis from the natural one:

$$P^{\mathbf{u}} = \frac{\partial P}{\partial u} \qquad P^{\mathbf{v}} = \frac{\partial P}{\partial v} \qquad \qquad N = N(u, v) = \frac{P^{\mathbf{u}} \times P^{\mathbf{v}}}{\|P^{\mathbf{u}} \times P^{\mathbf{v}}\|}$$

Parametric representation

It is then easy to show that one can switch from one basis to the other using coefficients of the 1st fundamental form ...

$$t_{1} = \frac{P^{\mathrm{u}}}{\|P^{\mathrm{u}}\|} = \frac{P^{\mathrm{u}}}{\sqrt{e}} \qquad t_{2} = \frac{eP^{\mathrm{v}} - fP^{\mathrm{u}}}{\sqrt{e\sqrt{eg} - f^{2}}} = \frac{eP^{\mathrm{v}} - fP^{\mathrm{u}}}{\sqrt{e\sqrt{h}}}$$

$$\begin{bmatrix} t_{1} \\ t_{2} \end{bmatrix} = \frac{1}{\sqrt{e\sqrt{h}}} \begin{bmatrix} \sqrt{h} & 0 \\ -f & e \end{bmatrix} \begin{bmatrix} P^{\mathrm{u}} \\ P^{\mathrm{v}} \end{bmatrix} \qquad h = eg - f^{2} = det(M_{1})$$

 One can also switch the other way back, working on coefficients rather than on vectors e.g. for any **vector** $\vec{w} = w_1 t_1 + w_2 t_2 = w_u P^{u} + w_v P^{v}$

One gets
$$\begin{bmatrix} w_u \\ w_v \end{bmatrix} = \frac{1}{\sqrt{e}\sqrt{h}} \begin{bmatrix} \sqrt{h} & -f \\ 0 & e \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \Phi \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Parametric representation

Now back to the shape operator : we will start with a vector expressed in the orthonormal frame (w_1, w_2) , convert it to the parametric basis (w_u, w_v) , take the directional derivative $w_u \frac{\partial}{\partial u} + w_v \frac{\partial}{\partial v}$ of the normal N and then project back to the orthonormal frame.

$$W_{p}(w) = -\begin{bmatrix} t_{1} \\ t_{2} \end{bmatrix} \begin{bmatrix} n_{u} & n_{v} \end{bmatrix} \Phi \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$
$$= -\Phi^{T} \begin{bmatrix} P^{u} \\ P^{v} \end{bmatrix} \begin{bmatrix} n_{u} & n_{v} \end{bmatrix} \Phi \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

• Here, $-\begin{bmatrix} P^{u} \\ P^{v} \end{bmatrix} [n_{u} \ n_{v}]$ is precisely the matrix of the coefficients of the second fundamental form...

Parametric representation

In the orthonormal basis

$$W_{p}(w) = \Phi^{T} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \Phi \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} = \frac{1}{eh} \begin{bmatrix} \sqrt{h} & 0 \\ -f & e \end{bmatrix} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} \sqrt{h} & -f \\ 0 & e \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$
$$= \frac{1}{eh} \begin{bmatrix} hl & (em-fl)\sqrt{h} \\ (em-fl)\sqrt{h} & f^{2}l + e^{2}n - 2efm \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

In the original basis

$$\widetilde{W}_{p}(w) = \Phi W_{p}(w) \Phi^{-1} \begin{bmatrix} w_{u} \\ w_{v} \end{bmatrix} = \Phi \left(\Phi^{T} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \Phi \right) \Phi^{-1} \begin{bmatrix} w_{u} \\ w_{v} \end{bmatrix}$$

$$= \Phi \Phi^{T} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} w_{u} \\ w_{v} \end{bmatrix} = \frac{1}{h} \begin{bmatrix} g & -f \\ -f & e \end{bmatrix} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} w_{u} \\ w_{v} \end{bmatrix} = \begin{bmatrix} e & f \\ f & g \end{bmatrix}^{-1} \cdot \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} w_{u} \\ w_{v} \end{bmatrix}$$

(Weingarten Equation)

Parametric representation

- Eigenvalues and eigenvectors of the shape operator
 - The shape operator tells the behavior of the normal for a given orientation (i.e. the derivative of the unit normal vector with respect to a small increment along that orientation on the surface)
 - One can work either in the original frame (non orthonormal):

$$(L - \kappa I) \begin{pmatrix} du \\ dv \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ with } L = M_1^{-1} M_2 = \widetilde{W}_p(w) \qquad det(L - \kappa I) = 0$$

... or the orthonormal frame, for which the matrix is symmetric and the 2D eigenvectors are orthogonal

$$(W_p(w) - \kappa I) \begin{pmatrix} dt_1 \\ dt_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad det(W_p(w) - \kappa I) = 0$$

Parametric representation

$$(M_2 - \kappa M_1) \begin{pmatrix} du \\ dv \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \begin{pmatrix} l - \kappa e & m - \kappa f \\ m - \kappa f & n - \kappa g \end{pmatrix} \begin{pmatrix} du \\ dv \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• The eigenvectors are obtained using any of the relations:

Just use the other relation if the basis contains a null vector for one of the values of κ :

Parametric representation

Example

$$P(u,v) = \begin{pmatrix} u \\ v \\ \cos u \end{pmatrix}$$
o.5

$$P^{u}(u,v) = \begin{pmatrix} 1\\0\\-\sin u \end{pmatrix} \quad P^{v}(u,v) = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad {}^{\scriptscriptstyle{-0.5}}$$

$$P^{uu}(u,v) = \begin{pmatrix} 0 \\ 0 \\ -\cos u \end{pmatrix} \qquad P^{uv}(u,v) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$P^{vv}(u,v) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$P^{uv}(u,v) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$N(u,v) = \frac{P^{u} \times P^{v}}{|P^{u} \times P^{v}|} = \begin{pmatrix} -\sin u \\ 0 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{1 + \sin^{2} u}}$$

$$(L-\kappa I)\begin{pmatrix} du\\ dv \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
 with $L = M_1^{-1}M_2$

$$\mathbf{M}_{1} = \begin{pmatrix} P^{u} \cdot P^{u} & P^{u} \cdot P^{v} \\ P^{u} \cdot P^{v} & P^{v} \cdot P^{v} \end{pmatrix} = \begin{pmatrix} 1 + \sin^{2} u & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{2} = \begin{pmatrix} N \cdot P^{uu} & N \cdot P^{uv} \\ N \cdot P^{uv} & N \cdot P^{vv} \end{pmatrix} = \begin{pmatrix} \frac{-\cos u}{\sqrt{1 + \sin^{2} u}} & 0 \\ 0 & 0 \end{pmatrix}$$

Parametric representation

Numerical application : u=0 and v=0

$$\mathbf{M}_1 = \begin{pmatrix} 1 + \sin^2 u & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_1^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_2 = \begin{pmatrix} \frac{-\cos u}{\sqrt{1 + \sin^2 u}} & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & 0 \end{pmatrix}$$

$$L = M_{1}^{-1} M_{2} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \longrightarrow \begin{matrix} \kappa_{1} = -1 & c_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \kappa_{2} = 0 & c_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{matrix} \longrightarrow \begin{matrix} C_{1}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ C_{2}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C_{2}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C_{3}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C_{4}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C_{4}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{array}{c} C_1 - \begin{pmatrix} 0 \end{pmatrix} & C_1^{3D} = \\ C_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} & C_2^{3D} = \end{array}$$

$$C_{1} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C_{2}^{3D} = (P_{u}, P_{v}) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Umbilical points

- Points whose normal curvature κ_n is independent of the orientation of Γ .
 - Locally, the surface looks like a plane or a sphere.
- In this case, the following relations hold for the matrices M_1 and M_2 :

$$\frac{l}{e} = \frac{m}{f} = \frac{n}{g} \text{ if } f \neq 0$$

$$\frac{l}{e} = \frac{n}{g}$$
 if $f = 0$ and $m = 0$

$$\kappa_n = \frac{l}{e} = \kappa_{min} = \kappa_{max} = \text{const.}$$

Principal directions are arbitrary.

Parametric representation

- Gaussian curvature and average curvature
 - Invariants (do not depend on the parametrization)

$$\kappa_{T} = \kappa_{min} \kappa_{max} = \det(L) = \frac{\det(M_{2})}{\det(M_{1})} = \frac{l \, n - m^{2}}{e \, g - f^{2}}$$

$$\kappa_{M} = \frac{\kappa_{min} + \kappa_{max}}{2} = \frac{1}{2} \operatorname{trace}(L) = \frac{1}{2} \frac{e \, n + g \, l - 2 \, f \, m}{e \, g - f^{2}}$$

$$\left(L=M_1^{-1}M_2\right)$$

Local nature of the surface

- $\kappa_T > 0$ the surface is locally an ellipsoid elliptic point
- κ_T<0 : hyperbolic paraboloid saddle point – hyperbolic point
- $\kappa_T = 0$ and $\kappa_M <> 0$: parabolic cylinder parabolic point
- $\kappa_T = 0$ and $\kappa_M = 0$: no information locally plane

LIEGE CAD & Computational Geometry **Christoffel symbols**

- Complete developments. Christoffel symbols
 - Expression of the first derivatives along a curve...

$$P_{\mathbf{u}} = \frac{\partial P(u, v)}{\partial u} \quad u' = \frac{du(t)}{dt}$$

$$P_{\mathbf{v}} = \frac{\partial P(u, v)}{\partial v} \quad v' = \frac{dv(t)}{dt}$$

Lets differentiate that expression again...

$$\Gamma'(t) = u'P_u + v'P_v$$

LIEGE CAD & Computational Geometry **Christoffel symbols**

$$(\Gamma'(t) = u'P_u + v'P_v)'$$

$$\Gamma''(t) = u'' P_u + u'(u' P_{uu} + v' P_{uv}) + v'' P_v + v'(u' P_{vu} + v' P_{vv})$$

$$= u'' P_u + v'' P_v + u'^2 P_{uu} + u' v' P_{uv} + u' v' P_{vu} + v'^2 P_{vv}$$

- The terms $u"P_u+v"P_v$ are in the tangent plane
- The terms P_{ij} , i, $j = \{u, v\}$ can be expressed as linear combinations of tangential and normal components:

$$P_{ij} = C_{ij}^u P_u + C_{ij}^v P_v + L_{ij} N$$
 Gauss formula

The C_{ii}^k are the Christoffel symbols (often written Γ_{ii}^k in textbooks) and the $L_{\scriptscriptstyle ij}$ are the coefficients of the second fundamental form.

Christoffel symbols

- Using Einstein's notation (summation over repeated indices): $P_{ii} = C_{ii}^k P_k + L_{ii} N$, i, j, k = u, v
 - How to compute C_{ii}^k and L_{ij} ?

$$\rightarrow \text{Multiply by } P_l, l=u, v$$

$$P_{ij} \cdot P_l = C_{ij}^k P_k \cdot P_l + L_{ij} N \cdot P_l$$

Coefficients of the 1st fundamental form = g_{kl} = metric tensor

$$P_{ij} \cdot P_l \cdot (g_{kl})^{-1} = C_{ij}^k g_{kl} \cdot g_{kl}^{-1}$$

$$C_{ij}^{k} = P_{ij} \cdot P_{l} \cdot (g_{kl})^{-1} \qquad \qquad C_{ij}^{k} = P_{ij} \cdot P_{l} (g^{lk})$$

$$C_{ij}^{k} = P_{ij} \cdot P_{l} g^{lk}$$

Conventional notation of the inverse of the metric tensor

LIEGE CAD & Computational Geometry université **Christoffel symbols**

$$P_{ij} = C_{ij}^k P_k + L_{ij} N$$

Now, multiply by N

$$P_{ij} \cdot N = C_{ij}^{k} \underbrace{P_{k} \cdot N} + L_{ij} \underbrace{N \cdot N}_{0}$$

$$L_{ij} = P_{ij} \cdot N$$

One recovers the formula seen before:

$$L_{ij} \equiv M_2 \qquad M_2 = \begin{pmatrix} N \cdot P^{uu} & N \cdot P^{uv} \\ N \cdot P^{uv} & N \cdot P^{vv} \end{pmatrix}$$

► LIEGE CAD & Computational Geometry université **Christoffel symbols**

- Use of Christoffel symbols and the second fundamental form
 - Let us return to the expression

$$\Gamma''(t) = u'' P_u + v'' P_v + u'^2 P_{uu} + u'v' P_{uv} + u'v' P_{vu} + v'^2 P_{vv}$$

• Now replace u, v by $u^i, i=1,2$ and use the Einstein notation again:

$$\Gamma''(t) = (u^i)'' P_i + (u^i)' \cdot (u^j)' P_{ij}$$

• Now substitute $P_{ii} = C_{ii}^k P_k + L_{ii} N$

$$\Gamma''(t) = \underbrace{((u^k)'' + C_{ij}^k(u^i)' \cdot (u^j)')P_k} + \underbrace{(u^i)' \cdot (u^j)' L_{ij}N}$$

LIEGE CAD & Computational Geometry

Christoffel symbols

- Used to express curvatures (or second derivatives) in the 3D euclidean space from curvatures (or second derivatives) expressed in the parametric space.
- Normal curvature: based on the normal component $(u^i)' \cdot (u^j)' L_{ii} N$

If we have an arc-length parametrization:

$$\kappa_n = \Gamma'' \cdot N = L_{ij}(u^i)'(u^j)' \qquad (=\varphi_2(d\Gamma^{uv}, d\Gamma^{uv}))$$

if not: need to adjust

$$\kappa_{n} = \frac{L_{ij}(u^{i})'(u^{j})'}{ds^{2}} = \frac{L_{ij}(u^{i})'(u^{j})'}{g_{kl}(u^{k})'(u^{l})'}$$

One recovers the formula : $\kappa_N = \frac{\varphi_2(d \Gamma^{uv}, d \Gamma^{uv})}{\varphi_1(d \Gamma^{uv}, d \Gamma^{uv})}$

LIEGE CAD & Computational Geometry **Christoffel symbols**

Geodesic curvature : based on the tangential components

$$((u^k)'' + C_{ij}^k (u^i)' \cdot (u^j)') P_k$$

• If the curve is parametrized by arc-length :

$$\Gamma' \cdot \Gamma' = 1 \qquad \Gamma' \cdot \Gamma'' = 0$$

$$\Gamma'' \cdot \Gamma' = 0 = \underbrace{\left(\left(u^k \right)'' + C_{ij}^k \left(u^i \right)' \cdot \left(u^j \right)' \right) P_k}^{=0} \Gamma' + \left(u^i \right)' \cdot \left(u^j \right)' L_{ij} N \cdot \Gamma'$$

• Therefore, the tangential component Γ_{τ} of Γ'' is orthogonal to Γ' and to N as well. There is a proportionality factor between Γ , " and $N \times \Gamma$ '. This factor is the geodesic curvature

LIEGE CAD & Computational Geometry

Christoffel symbols

$$\Gamma_{t} = \kappa_{g}(N \times \Gamma') \qquad \Gamma_{t} " \cdot (N \times \Gamma') = \kappa_{g}(N \times \Gamma') \cdot (N \times \Gamma')$$

$$\kappa_{g} = (N \times \Gamma') \cdot \Gamma_{t} " = (N \times \Gamma') \cdot \Gamma"$$

Therefore, $\kappa_g = [N, \Gamma', \Gamma'']$, valid only if the parametrization of Γ is normal (arc-length)

If not, need to adjust ...

$$\kappa_g = \frac{[N, \Gamma', \Gamma'']}{ds^3} = \frac{[N, \Gamma', \Gamma'']}{\left(g_{kl}(u^k)'(u^l)'\right)^{3/2}}$$

Some developments* leads to the following identity:

$$\varsigma_{g} = \frac{\sqrt{\det(M_{1})}[-C_{11}^{2}u'^{3} + C_{22}^{1}v'^{3} - (2C_{12}^{2} - C_{11}^{1})u'^{2}v' + (2C_{12}^{1} - C_{22}^{2})u'v'^{2} + u''v' - v''u']}{\left(|u' v'|M_{1}\binom{u'}{v'}\right)^{3/2}}$$

Again, this expression makes only use of derivatives in the parametric space... * see e.g. "Modern Differential Geometry of Curves and Staff against Mathematical and all Para Patro File CPC."

LIEGE CAD & Computational Geometry **Christoffel symbols**

Equations of a geodesic

Need to set that the geodesic curvature is equal to zero.

- One obtains a set of differential equations
- May be used to compute an approximation of the geodesic since it is usually impossible to solve that coupled system of ODEs algebraically.

LIEGE CAD & Computational Geometry

Parametric representation

Darboux frame and equations

$$\vec{P}(u,v):\begin{cases} x=f(u,v) \\ y=g(u,v) \end{cases} \quad \vec{\Gamma}^{uv}(s):\begin{cases} u=u(s) \\ v=v(s) \end{cases} \quad \vec{\Gamma}(s):\begin{cases} x(s)=f(u(s),v(s)) \\ y(s)=g(u(s),v(s)) \\ z(s)=h(u(s),v(s)) \end{cases}$$

$$\vec{\Gamma}(s) : \begin{cases} x(s) = f(u(s), v(s)) \\ y(s) = g(u(s), v(s)) \\ z(s) = h(u(s), v(s)) \end{cases}$$

$$\vec{T}(s) = \left\{ \frac{\partial x(s)}{\partial s}, \frac{\partial y(s)}{\partial s}, \frac{\partial z(s)}{\partial s} \right\}$$

$$\vec{N}(s) = \vec{N}(u(s), v(s))$$

$$\vec{G}(s) = \vec{N} \times \vec{T}$$

s is the curvilinear abscissa

Darboux frame and equations

- Geodesic torsion is identically zero iff the curve is along a direction of principal curvature (line of curvature)
- Geodesic curvature is identically zero iff the curve is a geodesic

- In an euclidean space:
 - The shortest line between two points has simple curvature κ equal to zero (= straight line)
 - The minimal surface carried by a curve is of average curvature κ_{M} equal to 0 everywhere
- In a non euclidean space (on a surface):
 - The (or one of the) shortest line between two points on the surface has a geodesic curvature κ_{g} equal to zero (it's a geodesic)

- A good reference on « shape interrogation »
 - Shape interrogation is the ability to get information from geometric models

N. M. Patrikalakis and T. Maekawa, *Shape* Interrogation for Computer Aided Design and Manufacturing, Springer Verlag, February 2002. ISBN 3-540-42454-7

(Available as a PDF electronic copy at the library)

LIÈGE CAD & Computational Geometry

Parametric representation

Some results of differential geometry

Gauss-Bonnet's theorem

$$\int_{S} \kappa_{T} dA + \int_{\partial S} \kappa_{g} dS = 2\pi \chi(S)$$

 $\chi(S)$ is Euler's characteristic of surface S

Application of Gauss-Bonnet's theorem

For a polyhedron, we have (Euler's formula):

$$\chi(S) = N - E + F$$

We want to approximate a sphere with hexagons (H) and pentagons (P).

- Each pentagon (hexagon) has 5 (6) nodes, shared by 3 faces
- Each pentagon (hexagon) has 5 (6) edges, shared by 2 faces
- So the total number of nodes N is (5P+6H)/3
- Total number of edges E is (5P+6H)/2, total number of faces Fis *P*+*H*

$$\chi(S)=N-E+F=(5P+6H)/3-(5P+6H)/2+P+H=P/6$$

• The sphere is compact and its gaussian curvature is $1/R^2$

$$\int_{S} \kappa_{T} dA + \int_{\partial S} \kappa_{G} dS = \frac{1}{R^{2}} \int_{S} dA = 4\pi = 2\pi \chi(S)$$

so *P*=12 ... 12 pentagons are necessary and as many hexagons as we want to make soccer ball.

LIÈGE CAD & Computational Geometry université **Parametric representation**

