¢ LIEGE CAD & Computational Geometry

< université

CAD&CG course

Masters in engineering



¢ LIEGE CAD & Computational Geometry

< université

= The course Is given in 2023-2024 if there are
enough students (5)

= In that case, it will not be given in 2024-2025.
Next session is 2025-2026

Please contact me if you are interested
E. Bechet
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Eric Béchet (it's me !)
= Engineering studies in Nancy (Fr.)

= Ph.D in Montréal (Can.)

= Academic career in Nantes as Post-doc then ass. Prof. in
Metz (Fr.)
then Liege...

Alex Bolyn
= Assistant ( Ph.D. student ) at our university
Website http://www.cgeo.ulg.ac.be/CADCG

Contacts : eric.bechet@uliege.be
a.bolyn@Quliege.be
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Procedures

= Ex-Cathedra lectures (~2h )
* Practical sessions

= Programming (~8 2h-sessions)

= Practical assessment : practical works (pw) are
rated.

= Project (pr)

= The practical sessions, and the project are all
mandatory. The final mark m=1/3pw + 2/3pr. ,
over 10 to pass & get the credits for the course.
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Procedures

= Lectures are given on wednesday, 1:45 PM —
Lecture room is B52 +2/441 (or B52 +2/438 if few
students)

= Begins today

= Practical work begins Sept. 27" after the course
(check website for more dates & info)

= Any question : | am available mostly Fridays,
appointment via email or phone : 04-366-9165
Office : Bldg B52 +2/438
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Course Outline

= |ntroduction
= Brief History of CAD Systems

= Generalities about Parametric Forms
= Curves
= Surfaces

= Some Practical Ways to represent Curves and
Surfaces in CAD Systems

= Cubic Splines
= Bézier Curves
= B-Splines
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Course Outline

= Solid Modeling in CAD systems
= B-REP Models
= Computational Geometry

= Convex Hull Problems
= Geometric Search

= Delaunay Triangulation
= Mesh Generation
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CAD/CAM — Computer Aided Design / Computer
Aided Manufacturing

= Development since the 1950s-1960s

= |[so Schoenberg (at U-Wisconsin) — splines (40's)

= First « interactive » CAD graphic engine at the MIT
(I. Sutherland, Sketchpad) — 60's

= James Ferguson (at Boeing) — splines (60's)
= Paul De Casteljau (at Citroen) — Bézier curves (50's)

= Pierre Bézier (at Renault) — " "

= Carl De Boor (at GM / U-Wisconsin) — B-Splines (70's)

= Catia, Unigraphics (now Siemens NX) date back to the mid-70’s,
emergence of 3d modeling kernels on mainframes.

= Huge expansion in the 80’s with cheap personal
computers becoming ubiquitous.
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Introduction
= Sketchpad (lvan Sutherland) — 1963



sutherland.mp4
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Introduction

= Computational geometry

= As old as ways to represent geometrical entities on
a computer

= Focus In this course

= Use CAD as an initial geometrical database

= Define operations in this setting and show how to
perform them efficiently — or not !

= Focus is made on applications in scientific computing,
e.g. mesh generation, ...

10
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Introduction
= Old mathematical and theoretical bases

= Practical framework has been developed
because of industrial needs.

= |In return, it has contributed at the theoretical
level.

11
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Parametric representation

12
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Parametric representation

Use of scalar parameters to “walk” on the
curve/surface

= The number of those scalars determine the dimension
of the entity and the mapping from one space (the
parametric space to the other (usually cartesian)
space.

= 0—-Point , 1 () — Curve, 2 (u,v)— Surface
3 (u,v,w) — Volume ( transformation used for finite elements)

= \We associate to those scalars some function for each
of the space coordinates ( x,y in the plane; x,y,z in 3D)

 Jx=s(w) ) = f(u,v)
Plu)={y=g(u) or Plu,v)={y=g(u,v)
\ZZh(u) \ZZh(u,v) 13
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Parametric representation

Parametric curves

14
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Parametric representation

For a curve, the representation takes the
following form:

u 1S a real parameter.

= \We obtain all the points of the curve by varying u.
= The parametrization is not unique !
= The parameter u can be limited (limits of the curve)

15
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Parametric representation

Continuity of the parametrization

= A parametric curve is said to be C; if the
parametrization P(u) is C, (i.e. the k" derivative is
continuous)

= However : a parametric curve of class C., may have an
angular point... (i.e. some continuity of the
parametrization does not necessarily involve the same
geometric continuity of the resulting curve !)

YA

3

> X—U
P(u)= 2
y=u

16
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Parametric representation

Regularity of the parametrization

= A parametric curve P(u) is regular if the first
derivative P'(u) does not vanish at any place on all
the interval of definition.

= On the contrary, points where P'(1) vanishes, are
called singular points.

= A given curve can admit two parametric forms such
that one is regular and the other one isn't...

= Example : curve y=x* with two parametric forms P(u) and

o) 3
=\ | x=u - >y XV -~ o
Pw= Tl Fusoi=l O0=TTY G0=0)=!

17
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Parametric representation

Regularity and continuity of the parametrization

= A curve of geometric continuity G, can be described by
a parametrization that is non- C,

= A curve of parametrization C, may not be G,
= A curve admitting singular points can be G_and/or C..
= Aregular curve is not necessary C, and/or G,.

To conclude :

= Parametric continuity, geometric continuity, and
regularity are all relatively independent notions!

18
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Parametric representation

C; -equivalent parametric forms

= Two parametric forms P(u) and O(v) of the same
curve are C; - equivalents if there is a bijective
function ¢ of class C; whose reciprocal is also of
class C; and such that:

-

v=@u)  Plu)=0(p (u))

19
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Parametric representation

Length of a regular curve

= |t is a measure that is independent of the
parametrization (provided that those are C;-
equivalent)

b d=(b)

L=[ P (w|du= | |0

a c=¢(a)

20
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Parametric representation
Natural parametrization

= |t is a parametrization s such that : .B\Ay
A

L(AB)=s(B)—s(A) N »

= s Is also named curvilinear abscissa along the
curve.

= |t can be built from any regular parametrization u of
the curve :

s(u)= [ [P ()] d

21
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Parametric representation

= Parametrization of a circle in the plane :

X—rcosu

u€|0,2|

y=rsinu’

= Natural parametrization of the same circle...

(
S
X—=rCOS —
r

.S
y=rsin—
r

, s€/0,2Tr| S=ru

\

22
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Parametric representation

Differential geometry for parametric curves

= Position P : x(u) :
. dP « d° P
Plu=|yi)| P=2L p=dt

I'e4
= Tangent vector T':

= Normal vector N :

|
dP _dP du_ P
T — — . — N
(1) ds du ds ‘p‘ \
Z

_ Normlu) o Norm(u)=P —|P"-T|T
‘Norm<u)‘ (It 1s not defined when Norm(u) =0 !)
= Binormal vector B :

B(u)=T(u)XN (u)

N(u)

23
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Parametric representation

Frenet's frame and equations

[aT(s)]
= 2D ds |_| O K(s)
dN(s)| [—k(s) O
ds
[dT(s) ]
ds [
0 K(s)
- 3D dljs(s) =l—k(s) 0
JB(s) 0 —1(s)
ds

Works only with s : the curvilinear abscissa ! ,,
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Parametric representation

= Curvature «x :

_|ar|_|P'xP|
|K|—g— ‘ "3
(7). P
c(u) =N (s)- 4L = Tl Nw)
ds—|P'(u)
Curvature vector
= Torsion t: =N (u)k (u)
d°T dT
' 2 ) ’T m " '
N'(u)-B(u)  \ds ds' | (p" P P]
T (u) T= .

~ P W) K |PxpT

25
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Parametric representation

Parametric surfaces

26
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Parametric representation

A parametric surface is represented as :

P(u,v)=1y=g(u,v)
z=h(

u,v are two real parameters

= All the points of the surface can be Ny
obtained by varying u and v. TL,

= Again, the parametrization is not unique !

= The interval of definition is limited (limits the
surface) 27
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Parametric representation

A curve can be defined on the surface

Parametric space « Ambient » space
(
( x=f(u,v)
> Uy Uu=ul\t -
E (0120 Pl =g
V=Y z=h(u,v)
k )

o xe=so),ve)
[(2):y=g(u(z),v(t))

(z=h(u(t),v(1)) 'y
= The equations seen for parametric > ,
curves are valid in this particular case. X

28
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Parametric representation

Regularity and continuity of the parametrization

= A parametric surface is of class C; if the mapping
P(u,v) onto R’ is of class (..

= A parametrization is regular if and only if (iff)

OP oP
ou OV

= The points on the parametric space for which it is
not the case are called singular points.

Z (uy, vy ) X =—(ug,v) %0 ¥ (u,, v,)€ DR’

= Ci—equivalent parametric forms follow the same
definitions as for curves

29
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Parametric representation

Differential geometry for parametric surfaces

-x(u,v) > 2=
* Position P: P(u,v)=|y(u,v) P“:@—ID P" = op
u Ouov
|z (u,v)]
= Unit tangent vector§1Tu and TV : -
Tuw"}):@P.aP :P TVW’V):@P.E?P :P
ou |Ou Lp“ ov |0v LPV
= These vectors are, in general, not orthogonal !
= Tangent plane (parametric form)
ﬁ(uo,v0)<a’b):i)(”o:Vo)'l'a'j:u(”o:Vo)"l'b'TV(”o’ Vo)
or (a,b)eR’
}_;t( )(a’b):i)(”o,Vo)+a'ﬁu(”0,vo)+b'ﬁv<uo’Vo)

Uy, Vy
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Parametric representation

= Normal vector N :

N(u,v)= Norm(u,v)

= with Norm(u,v)=T"XT" or P'XP"
‘Norm(u,v)‘

31
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Parametric representation

- Area of a surface

4=[] as y 4

dS=|du-P"Xdv-P"|=|P" X P"|dudv du P*

1st fundamental form

= Other notation of the area of a surface
axbf=(a-a)(b-b)—(a-b)

Lagrange's 1dentity

dSZ\/(eg—fz)dudv with e=P"-P" | f=P"-P" , g=P P’

A:ff V(eg— £2)dudy

32



¢ LIEGE CAD & Computational Geometry

< université

Parametric representation
= Length of a curve on a surface

rx—f(u,v) PHZGPW’V)
ﬁ(u V) y=g(u,v) 8Pa(Z ))
z=h(u,v) S
I R S CTORY0) s
E(0: 2100 Blo)s y=glulo) o) =)
| z=h(u(t),v(t))
:é‘P(u(t) v(t))du_l_é’P(u(t) v(t)) dv
Derivative of the curve expressed O U dt ov dt
the paramet spac'ofthe\su:facv:e L Derivative of the surface (in 3D)

33



<

¢ LIEGE CAD & Computational Geometry

université

Parametric representation

L:} ‘f'(r)‘dt:} \/‘f'(t)‘zdt

[ (£)=u(t)P"(ult),v(e)+v ()P (u(t),v(t))
T (t)=eu(t)+2fu(t)v(t)+gv(t)

with e=P"“P", f=P"P", g=P" P

34
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Parametric representation
= |f we set
ds = \/eu VP+2 fu(t)v(t)+gv(t) dt

that is equivalent to ; ds=ve du’+2 f dudv+g dv’

s(b)

( we have LZ_f ds=s(b)—s(a) )

s(a)

, we get a quadratic form :

eu (1) u(t)v v(t)=u v e f[ult
(642 fu(6)v (e)+g v (e =[u' (1) (t))f g/\v(t)
e f u'(t
L= f\/( )f g/\v(t) “

35
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Parametric representation

= Angle between two curves ...

r'l(tl)'r'z(tz):|r'1<t1)||r'2<t2)|0050(:(”'1(tl) v'l(tl))(; (]; 322;2)
y " e f u'z(tz)
i) )& 1|

” . e f u,(¢,) y v e f u,(t,)

\/( () 1(t1))(f el (1)) 2(t2))(f . V;(tz))

36
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b

a

(dTy,dTy)=|du, av|

Q \/Cp(druv,dF”v)dt COS 0L =

| Vdet M, dudv
D

Parametric representation

= The first fundamental form is the application :
e f||du,
fogl\dv,
with e=P"-P", f=P"“P", g=P"P"

du,

dv,

Z(a’u1 a’vl)M1

= |t is @ symmetric bilinear form that allows to measure real
distances from variations in the parametric space...

= The matrix M, is a representation of the metric tensor,
often noted g i, j=u,v

- M, also is related to the Jacobian matrix J=
of the transformation (u,v) — (x,y,z) (it is J'J ).

Oxlou Ox/ov
oylou oOylov
OzIlOu 0OzlOv

p(d T}, dT?y)
Vo(dT}, dT})(dTy ,dT5)

— ff det J dudv under some conditions
D

37
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Parametric representation

= Curvatures...

Geodesic curvature
or relative curvature
w/r to the surface :

Kg

\

Simple or total curvature
of the 3D curve :

K

Normal curvature :

n

38
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Parametric representation

= Curvature vectors

N
k:d—T:K.n:k + k (e.g. from Frenet's
ds "% relations) P(uv)
k,=x, N k,=x,G i —
| K, G=NXT
= Necessarily, we do N
have: N-T=0 'W
= Differentiating yields ke ’
dT d N
AL N+T- 22 0
ds ds ; |
_dT _ . dN 4T 6| %= |
Kn—gu]v——T'g Kg— s G) \/edu +2 fdudv+gdv 4
_ dP(u,v) dN_ dP-dN _ldu'+2mdudv+ndv’
i 45 ds ds>  edu®+2 f dudv+ g dv’ o
= 4P dN _ 1(dP dN dP dN,  _ dP dN
du du 2du dv dv du dv dv 39
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=

Parametric representation

_dPdN  _ 1(dPdN dP dN, _ dP dN
du du 2 du dv dv du dv dv
= This can be rewritten by noting that

dP dP
—-N=0and —-N=0
du dv
, and integrating by parts UV:f UdV+f VdU
where e.g. for [ U:d—P dV:d—N-du
u du
d'P d'P d' P

du’ dudv v’ N

40
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Parametric representation

Curvatures and the second fundamental form

= The second fundamental form is the application
du, du,
dv, dv,

[ m

0, (d T, dT5)=|du, dvl)m '

Z(du1 cz’vl)M2

with [=N-P" , n=N-P" , m=N-P"

= Normal curvature of a curve on a surface :
_cpz(druv’druv) - :cpz(druv,druv)
" ds’ ! (P1(drw’ druv)

K

= Geodesic curvature (curvature in the tangent plane)

= Measures the deviation of the curve in comparison with a
geodesic

41
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Definition of the geodesic

= |t is a curve with a minimal length on a surface.

= In the plane, those are lines
= On a sphere, great circles
= By definition, the geodesic has no geodesic curvature.

Relations between « simple » curvature, geodesic
curvature and normal curvature is obtained from the

curvature vectors
k=k,+k, k,=x, N k=xn k,=x, (NXT)=x,G

8
2 2. .2
K =K, +K,

The geodesic curvature is therefore readily obtained from

the others (except for the sign, which is same as a;,—tT.G )

2_ .2 2
K, =K —K,

42
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Parametric representation

= A circle of radius R in the plane

Curvature x = 1/R
Geodesic curvature k.= 1/R
Normal curvature k,=0

= A equatorial circle on a sphere of radius R
Curvature k= 1/R

Geodesic curvature k,= 0
Normal curvature x,= 1/R

= In the previous slides, k is the curvature of the
curve in 3D (not in the parametric space !!!)

43
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(pz(druv’ druv)

Cp1<d ruv’ d ruv)

= Curvatures of the surface «,=

= The normal curvature x, at a point only depends on the
local orientation of I' on the surface. If we sweep through
all the orientations, this curvature passes by a minimum
Knin then a maximum «,... for two perpendicular directions.

= These directions and the particular values of «, are
respectively called principal directions and principal
curvatures of the surface. They do not depend on the
parametrization of the surface...

= They are the solution of an eigenvalue problem.

= The Shape operator (also called Weingarten Map)
plays a key role here, see what follows.

44
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Parametric representation

= The shape operator w (w)=—-V N w=w,/P+w P,

= Here, N is the normal to the surface, p is a point on the

surface, w is a tangent unit vector to the surface at p. V  is

a directional derivative along w (in the surface) :

itis equal to w O 4y O

“Ou "Ov
This operator gives back a vector in the tangent plane.

45
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Parametric representation

= The shape operator W (w)=-V N

= |[f one uses an orthonormal basis, eigenvectors are easy to
compute as the operator is symmetric...

= |_et's build such an orthonormal basis from the natural one :

u_G_P V_a_P P'xX P’
P _ﬁu B 8\/ NZN(U’V):HPuXpV
_ P P'—(P"t )t
e = " =N Xt,. = 1771
T ]

46
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Parametric representation

= |t is then easy to show that one can switch from one
basis to the other using coefficients of the 1
fundamental form ...

= P" :Pu , :ePV—fPu:ePV—fPu
Pl Ve "TVNea—r . Ve
¢ 1 f o[ p

h=eg— f’=det(M,)

~Ven |-

- One can also switch the other way back, working on

coefficients rather than on vectors e.g. for any
vector w=w,¢+w,t,=w P'+w P’

PV

One gets

Vh = f
0 e

w,
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= Now back to the shape operator : we will start with
a vector expressed in the orthonormal frame
(w1,w2) , convert it to the parametgic bas(j}s (Wu,Wy),

take the directional derivative W W, o of the

normal N and then project back to the orthonormal
frame.

= Here, — i: [n, n,] IS precisely the matrix of the
coefficients of the second fundamental form...
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Parametric representation

= |In the orthonormal basis
WP(W)I(I)T-Z mq)-wl :L Vho ol m|[Vh - W,
monjw, eh|—f e|llm nj]|0 e ||lw,
:i- hl (em—f1)Vh W,
€h_(em—fl)\/% fil+e’n—2e fm||w,
= In the original basis
~ _ -1|w, | _ |l m -1l w,
W (w)=0W (w)P " =0 (P [m h O)D v
—opp’|! m|w. =Ll g —Sf|I m|w,]|_|e e mlw,
m njlw| hi—f e]|m njjw/| |f & m nllw,

(Weingarten Equation) \J(

49
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Parametric representation

= Eigenvalues and eigenvectors of the shape operator

= The shape operator tells the behavior of the normal for a
given orientation (i.e. the derivative of the unit normal vector
with respect to a small increment along that orientation on
the surface)

= One can work either in the original frame (non orthonormal):

du 0
dv

... or the orthonormal frame, for which the matrix is
symmetric and the 2D eigenvectors are orthogonal

(L—x1)|“"|=| | with L=M "' M,=W (w) det(L—xI)=0

dt,
()|

:(8) det (W (w)—x1)=0

50
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du\_(0| —w»|l—Ke m—xf|ldu|_|0
M, —xk M — —
(M=K M) dv| \0 m—xf n—xg/\dv|] \0

= The eigenvectors are obtained using any of the relations:

du|| [—xe —0 - du|_ |m—xf >0 dil+dvi=1
dv| \m—x f dv Ke—I
= Just use the other relation if the basis contains a null
vector for one of the values of « :
du) m—xf =0 > du =qQ- I—xg , a>0:du’+dvi=1
dv|\Il—xg dv K f—m

51
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= Example U
Plu,v)=| vy |
cosu| *
1 0| ..
P'(u,v)=| o P'(u,v)=|1
—sinu 0o ~
0 0
P"(u,v)=| 0 P (u,v)=|0
—CoS U 0
0 v, pv |—Sinu
P (u,v)=|0 N(u,v)= PMXPV = - 1 :
0 ‘P X P 1 \/1+sin u

52
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(L—x1) Z’“‘ = 8) with L=M,'M,
\%
M o=| PP PRPY _[1+sinfu 0
| Pqu PV.PV O 1
N-P“ N-P"| |[—2=£= 0
My=|  po . pr || V1#+sinu

0 0
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Parametric representation

= Numerical application : =0 and v=0

I+sin‘u O|_[1 0

M.=
1 1
0 1 0 1
-1 (1 O 7
M — . kb ’ll-if:'
FrLL
—CcoS U |
M — \/ .2 O — _1 O ‘2
2 l+sin"u 0 0 B
0 0
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Parametric representation

Umbilical points

= Points whose normal curvature «, is independent of
the orientation of I" .

= Locally, the surface looks like a plane or a sphere.

= In this case, the following relations hold for the
matrices M; and M: :

== i £20 z
e J 8 K,=—=X,;,—K,,,,— const.

n m

e
Principal directions are arbitrary.

L7 ip £20 and m=0
e g

55
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Parametric representation

= (Gaussian curvature and average curvature
= Invariants (do not depend on the parametrization)
:det(Mz) _ ln—m2
dCt(Ml) eg—f2

K,=k . K =det(L)

min " max

Kmin+Kmax 1
K, = 5 zatrace(L)

_lentgl-=2fm
2 eg-f

L=M"M,]

56
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Parametric representation
Local nature of the surface

= k70 the surface is locally an ellipsoid — elliptic point

= K7<0 : hyperbolic paraboloid — saddle point —
hyperbolic point

= K7~0 and k,<>0 : parabolic cylinder — parabolic
point

= k7~=0 and k,~0 : no information — locally plane

57
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Christoffel symbols
= Complete developments. Christoffel symbols

= Expression of the first derivatives along a curve...

_6P(u,v) '_du(t)
R P 7
_GP(u,v) ._a’v(t)
b= VT4

= Lets differentiate that expression again...

'(t)=u'P,+v'P,

58
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Christoffel symbols
" (T'(t)=u'P+v'P))’

r ”<t):u "Pu+u '(u ’Pl/ll/l+v ’PMV)+V ! PV+V ’(u ’PVM+V ’PVV)

— " " 12 P r Pt 12
=u"PA+v"P +u”" P, +u'v'P +u'v'P +v" P

= Theterms u" P +v" P  are in the tangent plane

" Theterms P, i, j={u,v]can be expressed as
linear combinations of tangential and normal
components

Pi/': CZ.PM+ C;Pv+LijN4/ Gauss formula
The C;, are the Christoffel symbols (often written T';

in textbooks ) and the L are the coefficients of the
second fundamental form.
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= Using Einstein's notation (summation over
repeated indices ): P,=C,P+L,N, i,j,k=u,v
= How to compute C’j and L,?

—>MU|t|p|y by Pl’ [=u,v

Py P)= Czl'{fLif/

\ Coefficients of the 15
fundamental form = & ;= metric tensor

0

1 k 1 Conventional

Pij'Pl'<gkl) ZCZ.].g,d-gk, notation of the
' ' inverse of the
¥ metric tensor

Cy=PyPrgy) . Cl=pP.Pg"
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P,=CyP+L,N
= Now, multiply by N

P, N:Cj§+ LU@\ |

= One recovers the formula seen before:

N.Puu N.Puv

LijEMz M2: uv vy
N-P° N-P
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= Use of Christoffel symbols and the second
fundamental form

= Let us return to the expression
C"(t)=u"P, +v "Pv+u’2PW+u’v’Puv+u’v ’Pvu+v’2PW

= Now replace u,v by u',i=1,2 and use the Einstein

notation again :
r"(e)=(u) P+(u')-(u') P,

7

* Now substitute P,=C; P,+L,N
)= ({0 ) () ) Py () () Ly N

Total tangential component Normal component -
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= Used to express curvatures (or second derivatives)
In the 3D euclidean space from curvatures (or
second derivatives) expressed in the parametric
space.

= Normal curvature: based on the normal component
(ui)'-(uj)'Ly.N
If we have an arc-length parametrization :
K, =T"N=L,(u) () (=¢,(dT",dT"))
If not : need to adjust
Ly(u) (u') _ L,(u') (')

) ——

" ds’ - gkz(”k),(“l)’
= One recovers the formula : Xy=

¢, (dT",dT")
(pl(d ruv, druv)
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= Geodesic curvature : based on the tangential
components

(") +C5(u') (")) P,

= If the curve is parametrized by arc-length :

=0
r-r'sr  r'r"=0

| i

L"r'=0=((u") +Cylu') (u’')) P-T"+(u') (') L;N T

= Therefore, the tangential component T, "of T'” is
orthogonal to I'' and to N as well. There is a
proportionality factor between I',” and N XT'.
This factor is the geodesic curvature
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" T,"=x,(NxI'') TI,"(NXI')=x,(NXI')(NXI')
K,=(NXI')-I,"=(NXIT')-T"
Therefore, «,=[N,T"’',T'"], valid only if the
parametrization of I" is normal (arc-length)

= If not, need to adjust ...
[N,F’,F”]_ [N,F’,F"]

3 N 1y \3/2
ds (gkl(u ) (” ) o |
= Some developments® leads to the following identity :
:\/det(Ml)[_Cﬁlu'3+C;2V'3_(2Cf2_C}1)”’ZV’+<2C}2_C§2)”’V’2+”"V'_V"u’]

Kg:

g 3/2

!

(1:1' v’)Ml(z

Again, this expression makes only use of derivatives
in the parametric Space_" * see e.g.“Modern Differential Geometry of Curves and

Surfaces with Mathematica”, 2nd ed. Boca Raton, FL: CRC
Press, pp. 501-518, 1997.

!
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= Equations of a geodesic

Need to set that the geodesic curvature is equal to
Zero.

= One obtains a set of differential equations

= May be used to compute an approximation of the
geodesic since It is usually impossible to solve that
coupled system of ODEs algebraically.
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Parametric representation

Darboux frame and equations

( (

B . I W R Sy O R}
Pluv)iiy=gluv) (5021 Fls)ilyis)=guls) v(s)
kz:h(u,v) z(s)=h(u(s),v(s))

s Is the curvilinear abscissa
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Darboux frame and equations

dT(s)
ds
0
dG(s)|_ e (s)
ds ¢
dN(s)| L7l
' as ' . Geodesic torsion (or relative torsion)
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= (Geodesic torsion

IS identically zero iff the curve is along a direction of
principal curvature (line of curvature)

= Geodesic curvature
IS identically zero iff the curve is a geodesic
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Parametric representation

= |n an euclidean space:

= The shortest line between two points has simple
curvature x equal to zero (= straight line)

= The minimal surface carried by a curve is of
average curvature x, equal to O everywhere

= In a non euclidean space (on a surface):

= The (or one of the) shortest line between two points
on the surface has a geodesic curvature K, equal to

zero (it's a geodesic)
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= A good reference on « shape interrogation »

= Shape interrogation is the ability to get information
from geometric models

N. M. Patrikalakis and T. Maekawa, Shape
Interrogation for Computer Aided Design and
Manufacturing, Springer Verlag, February 2002.
ISBN 3-540-42454-7

(Available as a PDF electronic copy at the library)
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Some results of differential geometry
Gauss-Bonnet's theorem
fKTdA+f KgdS:2rcx(S)
S oS

v (S) is Euler's
characteristic
of surface S
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Application of Gauss-Bonnet's theorem

= For a polyhedron, we have (Euler's formula) :
Y(S)=N—E+F
We want to approximate a sphere with hexagons ( #) and pentagons ( P ).

= Each pentagon (hexagon) has 5 (6) nodes, shared by 3 faces
= Each pentagon (hexagon) has 5 (6) edges, shared by 2 faces
= So the total number of nodes Nis ( 5P+6H )/3

= Total number of edges E is ( 5P+6H )/2, total number of faces F
is P+H
¥ (S)=N—E+F=(5P+6H)/3—(5P+6H)/2+P+H=P/6

= The sphere is compact and its gaussian curvature is 1/R?
1
[ kpda+ | kods=— | da=4m=27y(S)
S oS R

so P=12 ... 12 pentagons are necessary and as many hexagons
as we want to make soccer ball.
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